summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
authorYilun Lin <yllin@google.com>2018-10-04 10:19:57 +0800
committerchrome-bot <chrome-bot@chromium.org>2018-10-04 12:55:53 -0700
commit315aaca9467f49bc432ef5f2de9c0e3bb56f0251 (patch)
tree3ea739aca1db340e93b9daee7958d5afc5c9f31f /common
parentece03ab4d09b157c5e6f3c4fe0446678c0d8684b (diff)
downloadchrome-ec-315aaca9467f49bc432ef5f2de9c0e3bb56f0251.tar.gz
mag_cal: Support fixed-point calculation.
Modified from floating point version. This includes changes to vec3, vec4, mat33, mat44, and mag_cal. Now fixed-point type (fp_*) functions is a function wrapper for both fixed-point and floating point version operations: * define CONFIG_FPU to use floating version mag_cal * undef CONFIG_FPU to use fixed-point version mag_cal Also, add tests for both float and fp types operations. TEST=define CONFIG_FPU; flash on reef; See ARC++ magnetmeter app moving. TEST=undef CONFIG_FPU; flash on reef; See ARC++ magnetmeter app moving. TEST=make runtests -j TEST=make buildalltests -j BUG=b:113364863 BRANCH=None Change-Id: Ie695945acb666912babb2a603e09c602a0624d44 Signed-off-by: Yilun Lin <yllin@google.com> Reviewed-on: https://chromium-review.googlesource.com/1260704 Commit-Ready: Yilun Lin <yllin@chromium.org> Tested-by: Yilun Lin <yllin@chromium.org> Reviewed-by: Nicolas Boichat <drinkcat@chromium.org>
Diffstat (limited to 'common')
-rw-r--r--common/mag_cal.c121
-rw-r--r--common/mat33.c114
-rw-r--r--common/mat44.c37
-rw-r--r--common/vec3.c21
4 files changed, 156 insertions, 137 deletions
diff --git a/common/mag_cal.c b/common/mag_cal.c
index 6e5a48b6b1..1e71059921 100644
--- a/common/mag_cal.c
+++ b/common/mag_cal.c
@@ -16,9 +16,9 @@
/* Data from sensor is in 16th of uT */
#define MAG_CAL_RAW_UT 16
-#define MAX_EIGEN_RATIO 25.0f
-#define MAX_EIGEN_MAG (80.0f * MAG_CAL_RAW_UT)
-#define MIN_EIGEN_MAG (10.0f * MAG_CAL_RAW_UT)
+#define MAX_EIGEN_RATIO FLOAT_TO_FP(25.0f)
+#define MAX_EIGEN_MAG FLOAT_TO_FP(80.0f * MAG_CAL_RAW_UT)
+#define MIN_EIGEN_MAG FLOAT_TO_FP(10.0f * MAG_CAL_RAW_UT)
#define MAX_FIT_MAG MAX_EIGEN_MAG
#define MIN_FIT_MAG MIN_EIGEN_MAG
@@ -34,21 +34,24 @@
*/
static int moc_eigen_test(struct mag_cal_t *moc)
{
- mat33_float_t S;
- floatv3_t eigenvals;
- mat33_float_t eigenvecs;
- float evmax, evmin, evmag;
+ mat33_fp_t S;
+ fpv3_t eigenvals;
+ mat33_fp_t eigenvecs;
+ fp_t evmax, evmin, evmag;
int eigen_pass;
/* covariance matrix */
- S[0][0] = moc->acc[0][0] - moc->acc[0][3] * moc->acc[0][3];
- S[0][1] = S[1][0] = moc->acc[0][1] - moc->acc[0][3] * moc->acc[1][3];
- S[0][2] = S[2][0] = moc->acc[0][2] - moc->acc[0][3] * moc->acc[2][3];
- S[1][1] = moc->acc[1][1] - moc->acc[1][3] * moc->acc[1][3];
- S[1][2] = S[2][1] = moc->acc[1][2] - moc->acc[1][3] * moc->acc[2][3];
- S[2][2] = moc->acc[2][2] - moc->acc[2][3] * moc->acc[2][3];
-
- mat33_float_get_eigenbasis(S, eigenvals, eigenvecs);
+ S[0][0] = moc->acc[0][0] - fp_sq(moc->acc[0][3]);
+ S[0][1] = S[1][0] =
+ moc->acc[0][1] - fp_mul(moc->acc[0][3], moc->acc[1][3]);
+ S[0][2] = S[2][0] =
+ moc->acc[0][2] - fp_mul(moc->acc[0][3], moc->acc[2][3]);
+ S[1][1] = moc->acc[1][1] - fp_sq(moc->acc[1][3]);
+ S[1][2] = S[2][1] =
+ moc->acc[1][2] - fp_mul(moc->acc[1][3], moc->acc[2][3]);
+ S[2][2] = moc->acc[2][2] - fp_sq(moc->acc[2][3]);
+
+ mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs);
evmax = (eigenvals[X] > eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
evmax = (eigenvals[Z] > evmax) ? eigenvals[Z] : evmax;
@@ -56,9 +59,9 @@ static int moc_eigen_test(struct mag_cal_t *moc)
evmin = (eigenvals[X] < eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
evmin = (eigenvals[Z] < evmin) ? eigenvals[Z] : evmin;
- evmag = sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]);
+ evmag = fp_sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]);
- eigen_pass = (evmin * MAX_EIGEN_RATIO > evmax)
+ eigen_pass = (fp_mul(evmin, MAX_EIGEN_RATIO) > evmax)
&& (evmag > MIN_EIGEN_MAG)
&& (evmag < MAX_EIGEN_MAG);
@@ -80,10 +83,10 @@ static int moc_eigen_test(struct mag_cal_t *moc)
/*
* Kasa sphere fitting with normal equation
*/
-static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
+static int moc_fit(struct mag_cal_t *moc, fpv3_t bias, fp_t *radius)
{
sizev4_t pivot;
- floatv4_t out;
+ fpv4_t out;
int success = 0;
/*
@@ -100,16 +103,16 @@ static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
moc->acc[3][0] = moc->acc[0][3];
moc->acc[3][1] = moc->acc[1][3];
moc->acc[3][2] = moc->acc[2][3];
- moc->acc[3][3] = 1.0f;
+ moc->acc[3][3] = FLOAT_TO_FP(1.0f);
- moc->acc_w[X] *= -1;
- moc->acc_w[Y] *= -1;
- moc->acc_w[Z] *= -1;
- moc->acc_w[W] *= -1;
+ moc->acc_w[X] = fp_mul(moc->acc_w[X], FLOAT_TO_FP(-1));
+ moc->acc_w[Y] = fp_mul(moc->acc_w[Y], FLOAT_TO_FP(-1));
+ moc->acc_w[Z] = fp_mul(moc->acc_w[Z], FLOAT_TO_FP(-1));
+ moc->acc_w[W] = fp_mul(moc->acc_w[W], FLOAT_TO_FP(-1));
- mat44_float_decompose_lup(moc->acc, pivot);
+ mat44_fp_decompose_lup(moc->acc, pivot);
- mat44_float_solve(moc->acc, out, moc->acc_w, pivot);
+ mat44_fp_solve(moc->acc, out, moc->acc_w, pivot);
/*
* spherei is defined by:
@@ -120,10 +123,10 @@ static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
* r = sqrt(xc^2 + yc^2 + zc^2 - out[W])
*/
- memcpy(bias, out, sizeof(floatv3_t));
- floatv3_scalar_mul(bias, -0.5f);
+ memcpy(bias, out, sizeof(fpv3_t));
+ fpv3_scalar_mul(bias, FLOAT_TO_FP(-0.5f));
- *radius = sqrtf(floatv3_dot(bias, bias) - out[W]);
+ *radius = fp_sqrtf(fpv3_dot(bias, bias) - out[W]);
#if 0
CPRINTF("mag cal: bias (%d, %d, %d), R %d uT\n",
@@ -152,60 +155,61 @@ int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
int new_bias = 0;
/* 1. run accumulators */
- float w = v[X] * v[X] + v[Y] * v[Y] + v[Z] * v[Z];
+ fp_t w = fp_sq(v[X]) + fp_sq(v[Y]) + fp_sq(v[Z]);
moc->acc[0][3] += v[X];
moc->acc[1][3] += v[Y];
moc->acc[2][3] += v[Z];
moc->acc_w[W] += w;
- moc->acc[0][0] += v[X] * v[X];
- moc->acc[0][1] += v[X] * v[Y];
- moc->acc[0][2] += v[X] * v[Z];
- moc->acc_w[X] += v[X] * w;
+ moc->acc[0][0] += fp_sq(v[X]);
+ moc->acc[0][1] += fp_mul(v[X], v[Y]);
+ moc->acc[0][2] += fp_mul(v[X], v[Z]);
+ moc->acc_w[X] += fp_mul(v[X], w);
- moc->acc[1][1] += v[Y] * v[Y];
- moc->acc[1][2] += v[Y] * v[Z];
- moc->acc_w[Y] += v[Y] * w;
+ moc->acc[1][1] += fp_sq(v[Y]);
+ moc->acc[1][2] += fp_mul(v[Y], v[Z]);
+ moc->acc_w[Y] += fp_mul(v[Y], w);
- moc->acc[2][2] += v[Z] * v[Z];
- moc->acc_w[Z] += v[Z] * w;
+ moc->acc[2][2] += fp_sq(v[Z]);
+ moc->acc_w[Z] += fp_mul(v[Z], w);
if (moc->nsamples < MAG_CAL_MAX_SAMPLES)
moc->nsamples++;
/* 2. batch has enough samples? */
if (moc->batch_size > 0 && moc->nsamples >= moc->batch_size) {
- float inv = 1.0f / moc->nsamples;
+ fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f),
+ INT_TO_FP((int)moc->nsamples));
- moc->acc[0][3] *= inv;
- moc->acc[1][3] *= inv;
- moc->acc[2][3] *= inv;
- moc->acc_w[W] *= inv;
+ moc->acc[0][3] = fp_mul(moc->acc[0][3], inv);
+ moc->acc[1][3] = fp_mul(moc->acc[1][3], inv);
+ moc->acc[2][3] = fp_mul(moc->acc[2][3], inv);
+ moc->acc_w[W] = fp_mul(moc->acc_w[W], inv);
- moc->acc[0][0] *= inv;
- moc->acc[0][1] *= inv;
- moc->acc[0][2] *= inv;
- moc->acc_w[X] *= inv;
+ moc->acc[0][0] = fp_mul(moc->acc[0][0], inv);
+ moc->acc[0][1] = fp_mul(moc->acc[0][1], inv);
+ moc->acc[0][2] = fp_mul(moc->acc[0][2], inv);
+ moc->acc_w[X] = fp_mul(moc->acc_w[X], inv);
- moc->acc[1][1] *= inv;
- moc->acc[1][2] *= inv;
- moc->acc_w[Y] *= inv;
+ moc->acc[1][1] = fp_mul(moc->acc[1][1], inv);
+ moc->acc[1][2] = fp_mul(moc->acc[1][2], inv);
+ moc->acc_w[Y] = fp_mul(moc->acc_w[Y], inv);
- moc->acc[2][2] *= inv;
- moc->acc_w[Z] *= inv;
+ moc->acc[2][2] = fp_mul(moc->acc[2][2], inv);
+ moc->acc_w[Z] = fp_mul(moc->acc_w[Z], inv);
/* 3. eigen test */
if (moc_eigen_test(moc)) {
- floatv3_t bias;
- float radius;
+ fpv3_t bias;
+ fp_t radius;
/* 4. Kasa sphere fitting */
if (moc_fit(moc, bias, &radius)) {
- moc->bias[X] = bias[X] * -1;
- moc->bias[Y] = bias[Y] * -1;
- moc->bias[Z] = bias[Z] * -1;
+ moc->bias[X] = fp_mul(bias[X], FLOAT_TO_FP(-1));
+ moc->bias[Y] = fp_mul(bias[Y], FLOAT_TO_FP(-1));
+ moc->bias[Z] = fp_mul(bias[Z], FLOAT_TO_FP(-1));
moc->radius = radius;
@@ -218,4 +222,3 @@ int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
return new_bias;
}
-
diff --git a/common/mat33.c b/common/mat33.c
index 793173ee3a..87e335db26 100644
--- a/common/mat33.c
+++ b/common/mat33.c
@@ -10,31 +10,35 @@
#define K_EPSILON 1E-5f
-void init_zero_matrix(mat33_float_t A)
+void mat33_fp_init_zero(mat33_fp_t A)
{
- memset(A, 0, sizeof(mat33_float_t));
+ memset(A, 0, sizeof(mat33_fp_t));
}
-void init_diagonal_matrix(mat33_float_t A, float x)
+void mat33_fp_init_diagonal(mat33_fp_t A, fp_t x)
{
+ const size_t N = 3;
size_t i;
- init_zero_matrix(A);
- for (i = 0; i < 3; ++i)
+ mat33_fp_init_zero(A);
+
+ for (i = 0; i < N; ++i)
A[i][i] = x;
}
-void mat33_float_scalar_mul(mat33_float_t A, float c)
+void mat33_fp_scalar_mul(mat33_fp_t A, fp_t c)
{
+ const size_t N = 3;
size_t i;
- for (i = 0; i < 3; ++i) {
+
+ for (i = 0; i < N; ++i) {
size_t j;
- for (j = 0; j < 3; ++j)
- A[i][j] *= c;
+ for (j = 0; j < N; ++j)
+ A[i][j] = fp_mul(A[i][j], c);
}
}
-void mat33_float_swap_rows(mat33_float_t A, const size_t i, const size_t j)
+void mat33_fp_swap_rows(mat33_fp_t A, const size_t i, const size_t j)
{
const size_t N = 3;
size_t k;
@@ -43,7 +47,7 @@ void mat33_float_swap_rows(mat33_float_t A, const size_t i, const size_t j)
return;
for (k = 0; k < N; ++k) {
- float tmp = A[i][k];
+ fp_t tmp = A[i][k];
A[i][k] = A[j][k];
A[j][k] = tmp;
}
@@ -55,79 +59,91 @@ void mat33_float_swap_rows(mat33_float_t A, const size_t i, const size_t j)
* The i-th eigenvalue corresponds to the eigenvector in the i-th _row_ of
* "eigenvecs".
*/
-void mat33_float_get_eigenbasis(mat33_float_t S, floatv3_t e_vals,
- mat33_float_t e_vecs)
+void mat33_fp_get_eigenbasis(mat33_fp_t S, fpv3_t e_vals,
+ mat33_fp_t e_vecs)
{
const size_t N = 3;
sizev3_t ind;
size_t i, j, k, l, m;
for (k = 0; k < N; ++k) {
- ind[k] = mat33_float_maxind(S, k);
+ ind[k] = mat33_fp_maxind(S, k);
e_vals[k] = S[k][k];
}
- init_diagonal_matrix(e_vecs, 1.0f);
+ mat33_fp_init_diagonal(e_vecs, FLOAT_TO_FP(1.0f));
for (;;) {
- float y, t, s, c, p, sum;
+ fp_t y, t, s, c, p, sum;
+
m = 0;
- for (k = 1; k + 1 < N; ++k) {
- if (fabsf(S[k][ind[k]]) >
- fabsf(S[m][ind[m]])) {
+ for (k = 1; k + 1 < N; ++k)
+ if (fp_abs(S[k][ind[k]]) > fp_abs(S[m][ind[m]]))
m = k;
- }
- }
k = m;
l = ind[m];
p = S[k][l];
- if (fabsf(p) < K_EPSILON)
+ /*
+ * Note: K_EPSILON(1E-5) is too small to fit into 32-bit
+ * fixed-point(with 16 fp bits). The minimum positive value is
+ * 1 which is approximately 1.52E-5, so the
+ * FLOAT_TO_FP(K_EPSILON) becomes zero.
+ */
+ if (fp_abs(p) <= FLOAT_TO_FP(K_EPSILON))
break;
- y = (e_vals[l] - e_vals[k]) * 0.5f;
+ y = fp_mul(e_vals[l] - e_vals[k], FLOAT_TO_FP(0.5f));
- t = fabsf(y) + sqrtf(p * p + y * y);
- s = sqrtf(p * p + t * t);
- c = t / s;
- s = p / s;
- t = p * p / t;
+ t = fp_abs(y) + fp_sqrtf(fp_sq(p) + fp_sq(y));
+ s = fp_sqrtf(fp_sq(p) + fp_sq(t));
+ c = fp_div_dbz(t, s);
+ s = fp_div_dbz(p, s);
+ t = fp_div_dbz(fp_sq(p), t);
- if (y < 0.0f) {
+ if (y < FLOAT_TO_FP(0.0f)) {
s = -s;
t = -t;
}
- S[k][l] = 0.0f;
+ S[k][l] = FLOAT_TO_FP(0.0f);
e_vals[k] -= t;
e_vals[l] += t;
for (i = 0; i < k; ++i)
- mat33_float_rotate(S, c, s, i, k, i, l);
+ mat33_fp_rotate(S, c, s, i, k, i, l);
for (i = k + 1; i < l; ++i)
- mat33_float_rotate(S, c, s, k, i, i, l);
+ mat33_fp_rotate(S, c, s, k, i, i, l);
for (i = l + 1; i < N; ++i)
- mat33_float_rotate(S, c, s, k, i, l, i);
+ mat33_fp_rotate(S, c, s, k, i, l, i);
for (i = 0; i < N; ++i) {
- float tmp = c * e_vecs[k][i] - s * e_vecs[l][i];
- e_vecs[l][i] = s * e_vecs[k][i] + c * e_vecs[l][i];
+ fp_t tmp = fp_mul(c, e_vecs[k][i]) -
+ fp_mul(s, e_vecs[l][i]);
+ e_vecs[l][i] = fp_mul(s, e_vecs[k][i]) +
+ fp_mul(c, e_vecs[l][i]);
e_vecs[k][i] = tmp;
}
- ind[k] = mat33_float_maxind(S, k);
- ind[l] = mat33_float_maxind(S, l);
+ ind[k] = mat33_fp_maxind(S, k);
+ ind[l] = mat33_fp_maxind(S, l);
- sum = 0.0f;
+ sum = FLOAT_TO_FP(0.0f);
for (i = 0; i < N; ++i)
for (j = i + 1; j < N; ++j)
- sum += fabsf(S[i][j]);
-
- if (sum < K_EPSILON)
+ sum += fp_abs(S[i][j]);
+
+ /*
+ * Note: K_EPSILON(1E-5) is too small to fit into 32-bit
+ * fixed-point(with 16 fp bits). The minimum positive value is
+ * 1 which is approximately 1.52E-5, so the
+ * FLOAT_TO_FP(K_EPSILON) becomes zero.
+ */
+ if (sum <= FLOAT_TO_FP(K_EPSILON))
break;
}
@@ -138,32 +154,32 @@ void mat33_float_get_eigenbasis(mat33_float_t S, floatv3_t e_vals,
m = l;
if (k != m) {
- float tmp = e_vals[k];
+ fp_t tmp = e_vals[k];
e_vals[k] = e_vals[m];
e_vals[m] = tmp;
- mat33_float_swap_rows(e_vecs, k, m);
+ mat33_fp_swap_rows(e_vecs, k, m);
}
}
}
/* index of largest off-diagonal element in row k */
-size_t mat33_float_maxind(mat33_float_t A, size_t k)
+size_t mat33_fp_maxind(mat33_fp_t A, size_t k)
{
const size_t N = 3;
size_t i, m = k + 1;
for (i = k + 2; i < N; ++i)
- if (fabsf(A[k][i]) > fabsf(A[k][m]))
+ if (fp_abs(A[k][i]) > fp_abs(A[k][m]))
m = i;
return m;
}
-void mat33_float_rotate(mat33_float_t A, float c, float s,
- size_t k, size_t l, size_t i, size_t j)
+void mat33_fp_rotate(mat33_fp_t A, fp_t c, fp_t s,
+ size_t k, size_t l, size_t i, size_t j)
{
- float tmp = c * A[k][l] - s * A[i][j];
- A[i][j] = s * A[k][l] + c * A[i][j];
+ fp_t tmp = fp_mul(c, A[k][l]) - fp_mul(s, A[i][j]);
+ A[i][j] = fp_mul(s, A[k][l]) + fp_mul(c, A[i][j]);
A[k][l] = tmp;
}
diff --git a/common/mat44.c b/common/mat44.c
index 2ca3b69c32..a4232bf8d4 100644
--- a/common/mat44.c
+++ b/common/mat44.c
@@ -10,37 +10,38 @@
#define K_EPSILON 1E-5f
-void mat44_float_decompose_lup(mat44_float_t LU, sizev4_t pivot)
+void mat44_fp_decompose_lup(mat44_fp_t LU, sizev4_t pivot)
{
const size_t N = 4;
size_t i, j, k;
for (k = 0; k < N; ++k) {
- float max = fabsf(LU[k][k]);
+ fp_t max = fp_abs(LU[k][k]);
pivot[k] = k;
for (j = k + 1; j < N; ++j) {
- if (max < fabsf(LU[j][k])) {
- max = fabsf(LU[j][k]);
+ const fp_t lu_jk = fp_abs(LU[j][k]);
+ if (max < lu_jk) {
+ max = lu_jk;
pivot[k] = j;
}
}
if (pivot[k] != k)
- mat44_float_swap_rows(LU, k, pivot[k]);
+ mat44_fp_swap_rows(LU, k, pivot[k]);
- if (fabsf(LU[k][k]) < K_EPSILON)
+ if (fp_abs(LU[k][k]) < FLOAT_TO_FP(K_EPSILON))
continue;
for (j = k + 1; j < N; ++j)
- LU[k][j] /= LU[k][k];
+ LU[k][j] = fp_div_dbz(LU[k][j], LU[k][k]);
for (i = k + 1; i < N; ++i)
for (j = k + 1; j < N; ++j)
- LU[i][j] -= LU[i][k] * LU[k][j];
+ LU[i][j] -= fp_mul(LU[i][k], LU[k][j]);
}
}
-void mat44_float_swap_rows(mat44_float_t A, const size_t i, const size_t j)
+void mat44_fp_swap_rows(mat44_fp_t A, const size_t i, const size_t j)
{
const size_t N = 4;
size_t k;
@@ -49,35 +50,35 @@ void mat44_float_swap_rows(mat44_float_t A, const size_t i, const size_t j)
return;
for (k = 0; k < N; ++k) {
- float tmp = A[i][k];
+ fp_t tmp = A[i][k];
A[i][k] = A[j][k];
A[j][k] = tmp;
}
}
-void mat44_float_solve(mat44_float_t A, floatv4_t x, const floatv4_t b,
- const sizev4_t pivot)
+void mat44_fp_solve(mat44_fp_t A, fpv4_t x, const fpv4_t b,
+ const sizev4_t pivot)
{
const size_t N = 4;
- floatv4_t b_copy;
+ fpv4_t b_copy;
size_t i, k;
- memcpy(b_copy, b, sizeof(floatv4_t));
+ memcpy(b_copy, b, sizeof(fpv4_t));
for (k = 0; k < N; ++k) {
if (pivot[k] != k) {
- float tmp = b_copy[k];
+ fp_t tmp = b_copy[k];
b_copy[k] = b_copy[pivot[k]];
b_copy[pivot[k]] = tmp;
}
x[k] = b_copy[k];
for (i = 0; i < k; ++i)
- x[k] -= x[i] * A[k][i];
- x[k] /= A[k][k];
+ x[k] -= fp_mul(x[i], A[k][i]);
+ x[k] = fp_div_dbz(x[k], A[k][k]);
}
for (k = N; k-- > 0;)
for (i = k + 1; i < N; ++i)
- x[k] -= x[i] * A[k][i];
+ x[k] -= fp_mul(x[i], A[k][i]);
}
diff --git a/common/vec3.c b/common/vec3.c
index 4c157467c1..9a3561365a 100644
--- a/common/vec3.c
+++ b/common/vec3.c
@@ -9,25 +9,24 @@
#include "vec3.h"
#include "util.h"
-void floatv3_scalar_mul(floatv3_t v, float c)
+void fpv3_scalar_mul(fpv3_t v, fp_t c)
{
- v[X] *= c;
- v[Y] *= c;
- v[Z] *= c;
+ v[X] = fp_mul(v[X], c);
+ v[Y] = fp_mul(v[Y], c);
+ v[Z] = fp_mul(v[Z], c);
}
-float floatv3_dot(const floatv3_t v, const floatv3_t w)
+fp_t fpv3_dot(const fpv3_t v, const fpv3_t w)
{
- return v[X] * w[X] + v[Y] * w[Y] + v[Z] * w[Z];
+ return fp_mul(v[X], w[X]) + fp_mul(v[Y], w[Y]) + fp_mul(v[Z], w[Z]);
}
-float floatv3_norm_squared(const floatv3_t v)
+fp_t fpv3_norm_squared(const fpv3_t v)
{
- return floatv3_dot(v, v);
+ return fpv3_dot(v, v);
}
-float floatv3_norm(const floatv3_t v)
+fp_t fpv3_norm(const fpv3_t v)
{
- return sqrtf(floatv3_norm_squared(v));
+ return fp_sqrtf(fpv3_norm_squared(v));
}
-