summaryrefslogtreecommitdiff
path: root/test/fpsensor_crypto.c
diff options
context:
space:
mode:
authorTom Hughes <tomhughes@chromium.org>2019-09-23 16:04:20 -0700
committerCommit Bot <commit-bot@chromium.org>2020-02-07 21:27:04 +0000
commit1f5cc901ecc4026ebce41d4eeca602875ad7f4b6 (patch)
tree2c726c1f4096353e7dfa748197683b090ff678e5 /test/fpsensor_crypto.c
parentf74a01dc024fea492d970300c679aa6acaf2cacc (diff)
downloadchrome-ec-1f5cc901ecc4026ebce41d4eeca602875ad7f4b6.tar.gz
fpsensor: Refactor fpsensor tests into separate binaries
Using separate test binaries helps to prevent state from one set of tests accidentally leaking into other tests. Ideally all unit tests should be completely independent. Since there's a lot of global state in the fpsensor code the separate test binaries should help prevent the state from leaking across tests as we continue to add more. Also, by having a 1:1 correspondence between test binaries and test files, it's clearer what file (and functionality) each set of tests is targeting. BRANCH=none BUG=none TEST=make buildall -j Change-Id: I937a5ffebfe61aa711efbbc2467d15d514fcfbae Signed-off-by: Tom Hughes <tomhughes@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/ec/+/1832748 Commit-Queue: Yicheng Li <yichengli@chromium.org> Tested-by: Yicheng Li <yichengli@chromium.org> Reviewed-by: Yicheng Li <yichengli@chromium.org>
Diffstat (limited to 'test/fpsensor_crypto.c')
-rw-r--r--test/fpsensor_crypto.c643
1 files changed, 643 insertions, 0 deletions
diff --git a/test/fpsensor_crypto.c b/test/fpsensor_crypto.c
new file mode 100644
index 0000000000..1f54e1ecf9
--- /dev/null
+++ b/test/fpsensor_crypto.c
@@ -0,0 +1,643 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include <stdbool.h>
+
+#include "common.h"
+#include "ec_commands.h"
+#include "fpsensor_crypto.h"
+#include "fpsensor_state.h"
+#include "mock/fpsensor_state_mock.h"
+#include "mock/rollback_mock.h"
+#include "mock/timer_mock.h"
+#include "test_util.h"
+#include "util.h"
+
+static const uint8_t fake_positive_match_salt[] = {
+ 0x04, 0x1f, 0x5a, 0xac, 0x5f, 0x79, 0x10, 0xaf,
+ 0x04, 0x1d, 0x46, 0x3a, 0x5f, 0x08, 0xee, 0xcb,
+};
+
+static const uint8_t fake_user_id[] = {
+ 0x28, 0xb5, 0x5a, 0x55, 0x57, 0x1b, 0x26, 0x88,
+ 0xce, 0xc5, 0xd1, 0xfe, 0x1d, 0x58, 0x5b, 0x94,
+ 0x51, 0xa2, 0x60, 0x49, 0x9f, 0xea, 0xb1, 0xea,
+ 0xf7, 0x04, 0x2f, 0x0b, 0x20, 0xa5, 0x93, 0x64,
+};
+
+/*
+ * |expected_positive_match_secret_for_empty_user_id| is obtained by running
+ * BoringSSL locally.
+ * From https://boringssl.googlesource.com/boringssl
+ * commit 365b7a0fcbf273b1fa704d151059e419abd6cfb8
+ *
+ * Steps to reproduce:
+ *
+ * Open boringssl/crypto/hkdf/hkdf_test.cc
+ * Add the following case to static const HKDFTestVector kTests[]
+ *
+ * // test positive match secret
+ * {
+ * EVP_sha256,
+ * {
+ * // IKM:
+ * // fake_rollback_secret
+ * [ ***Copy 32 octets of fake_rollback_secret here*** ]
+ * // fake_tpm_seed
+ * [ ***Copy 32 octets of fake_tpm_seed here*** ]
+ * }, 64,
+ * {
+ * // fake_positive_match_salt
+ * [ ***Copy 16 octets of fake_positive_match_salt here*** ]
+ * }, 16,
+ * {
+ * // Info:
+ * // "positive_match_secret for user "
+ * 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65,
+ * 0x5f, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x5f, 0x73,
+ * 0x65, 0x63, 0x72, 0x65, 0x74, 0x20, 0x66, 0x6f,
+ * 0x72, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20,
+ * // user_id
+ * [ ***Type 32 octets of 0x00 here*** ]
+ * }, 63,
+ * { // Expected PRK:
+ * 0xc2, 0xff, 0x50, 0x2d, 0xb1, 0x7e, 0x87, 0xb1,
+ * 0x25, 0x36, 0x3a, 0x88, 0xe1, 0xdb, 0x4f, 0x98,
+ * 0x22, 0xb5, 0x66, 0x8c, 0xab, 0xb7, 0xc7, 0x5e,
+ * 0xd7, 0x56, 0xbe, 0xde, 0x82, 0x3f, 0xd0, 0x62,
+ * }, 32,
+ * 32, { // 32 = L = FP_POSITIVE_MATCH_SECRET_BYTES
+ * // Expected positive match secret:
+ * [ ***Copy 32 octets of expected positive_match_secret here*** ]
+ * }
+ * },
+ *
+ * Then from boringssl/ execute:
+ * mkdir build
+ * cd build
+ * cmake ..
+ * make
+ * cd ..
+ * go run util/all_tests.go
+ */
+static const uint8_t expected_positive_match_secret_for_empty_user_id[] = {
+ 0x8d, 0xc4, 0x5b, 0xdf, 0x55, 0x1e, 0xa8, 0x72,
+ 0xd6, 0xdd, 0xa1, 0x4c, 0xb8, 0xa1, 0x76, 0x2b,
+ 0xde, 0x38, 0xd5, 0x03, 0xce, 0xe4, 0x74, 0x51,
+ 0x63, 0x6c, 0x6a, 0x26, 0xa9, 0xb7, 0xfa, 0x68,
+};
+
+/*
+ * Same as |expected_positive_match_secret_for_empty_user_id| but use
+ * |fake_user_id| instead of all-zero user_id.
+ */
+static const uint8_t expected_positive_match_secret_for_fake_user_id[] = {
+ 0x0d, 0xf5, 0xac, 0x7c, 0xad, 0x37, 0x0a, 0x66,
+ 0x2f, 0x71, 0xf6, 0xc6, 0xca, 0x8a, 0x41, 0x69,
+ 0x8a, 0xd3, 0xcf, 0x0b, 0xc4, 0x5a, 0x5f, 0x4d,
+ 0x54, 0xeb, 0x7b, 0xad, 0x5d, 0x1b, 0xbe, 0x30,
+};
+
+static int test_hkdf_expand_raw(const uint8_t *prk, size_t prk_size,
+ const uint8_t *info, size_t info_size,
+ const uint8_t *expected_okm, size_t okm_size)
+{
+ uint8_t actual_okm[okm_size];
+
+ TEST_ASSERT(hkdf_expand(actual_okm, okm_size, prk, prk_size,
+ info, info_size) == EC_SUCCESS);
+ TEST_ASSERT_ARRAY_EQ(expected_okm, actual_okm, okm_size);
+ return EC_SUCCESS;
+}
+
+test_static int test_hkdf_expand(void)
+{
+ /* Test vectors in https://tools.ietf.org/html/rfc5869#appendix-A */
+ static const uint8_t prk1[] = {
+ 0x07, 0x77, 0x09, 0x36, 0x2c, 0x2e, 0x32, 0xdf,
+ 0x0d, 0xdc, 0x3f, 0x0d, 0xc4, 0x7b, 0xba, 0x63,
+ 0x90, 0xb6, 0xc7, 0x3b, 0xb5, 0x0f, 0x9c, 0x31,
+ 0x22, 0xec, 0x84, 0x4a, 0xd7, 0xc2, 0xb3, 0xe5,
+ };
+ static const uint8_t info1[] = {
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+ 0xf8, 0xf9,
+ };
+ static const uint8_t expected_okm1[] = {
+ 0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a,
+ 0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36, 0x2f, 0x2a,
+ 0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c,
+ 0x5d, 0xb0, 0x2d, 0x56, 0xec, 0xc4, 0xc5, 0xbf,
+ 0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18,
+ 0x58, 0x65,
+ };
+ static const uint8_t prk2[] = {
+ 0x06, 0xa6, 0xb8, 0x8c, 0x58, 0x53, 0x36, 0x1a,
+ 0x06, 0x10, 0x4c, 0x9c, 0xeb, 0x35, 0xb4, 0x5c,
+ 0xef, 0x76, 0x00, 0x14, 0x90, 0x46, 0x71, 0x01,
+ 0x4a, 0x19, 0x3f, 0x40, 0xc1, 0x5f, 0xc2, 0x44,
+ };
+ static const uint8_t info2[] = {
+ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
+ };
+ static const uint8_t expected_okm2[] = {
+ 0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1,
+ 0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a, 0x49, 0x34,
+ 0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8,
+ 0xa0, 0x50, 0xcc, 0x4c, 0x19, 0xaf, 0xa9, 0x7c,
+ 0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72,
+ 0x71, 0xcb, 0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09,
+ 0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8,
+ 0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71,
+ 0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec, 0x3e, 0x87,
+ 0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f,
+ 0x1d, 0x87,
+ };
+ static const uint8_t prk3[] = {
+ 0x19, 0xef, 0x24, 0xa3, 0x2c, 0x71, 0x7b, 0x16,
+ 0x7f, 0x33, 0xa9, 0x1d, 0x6f, 0x64, 0x8b, 0xdf,
+ 0x96, 0x59, 0x67, 0x76, 0xaf, 0xdb, 0x63, 0x77,
+ 0xac, 0x43, 0x4c, 0x1c, 0x29, 0x3c, 0xcb, 0x04,
+ };
+ static const uint8_t expected_okm3[] = {
+ 0x8d, 0xa4, 0xe7, 0x75, 0xa5, 0x63, 0xc1, 0x8f,
+ 0x71, 0x5f, 0x80, 0x2a, 0x06, 0x3c, 0x5a, 0x31,
+ 0xb8, 0xa1, 0x1f, 0x5c, 0x5e, 0xe1, 0x87, 0x9e,
+ 0xc3, 0x45, 0x4e, 0x5f, 0x3c, 0x73, 0x8d, 0x2d,
+ 0x9d, 0x20, 0x13, 0x95, 0xfa, 0xa4, 0xb6, 0x1a,
+ 0x96, 0xc8,
+ };
+ static uint8_t unused_output[SHA256_DIGEST_SIZE] = { 0 };
+
+ TEST_ASSERT(test_hkdf_expand_raw(prk1, sizeof(prk1), info1,
+ sizeof(info1), expected_okm1,
+ sizeof(expected_okm1))
+ == EC_SUCCESS);
+ TEST_ASSERT(test_hkdf_expand_raw(prk2, sizeof(prk2), info2,
+ sizeof(info2), expected_okm2,
+ sizeof(expected_okm2))
+ == EC_SUCCESS);
+ TEST_ASSERT(test_hkdf_expand_raw(prk3, sizeof(prk3), NULL, 0,
+ expected_okm3, sizeof(expected_okm3))
+ == EC_SUCCESS);
+
+ TEST_ASSERT(hkdf_expand(NULL, sizeof(unused_output), prk1,
+ sizeof(prk1), info1, sizeof(info1))
+ == EC_ERROR_INVAL);
+ TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
+ NULL, sizeof(prk1), info1, sizeof(info1))
+ == EC_ERROR_INVAL);
+ TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
+ prk1, sizeof(prk1), NULL, sizeof(info1))
+ == EC_ERROR_INVAL);
+ /* Info size too long. */
+ TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
+ prk1, sizeof(prk1), info1, 1024)
+ == EC_ERROR_INVAL);
+ /* OKM size too big. */
+ TEST_ASSERT(hkdf_expand(unused_output, 256 * SHA256_DIGEST_SIZE,
+ prk1, sizeof(prk1), info1, sizeof(info1))
+ == EC_ERROR_INVAL);
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_encryption_key_failure_seed_not_set(void)
+{
+ static uint8_t unused_key[SBP_ENC_KEY_LEN];
+ static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES]
+ = { 0 };
+
+ /* GIVEN that the TPM seed is not set. */
+ if (fp_tpm_seed_is_set()) {
+ ccprintf("%s:%s(): this test should be executed before setting"
+ " TPM seed.\n",
+ __FILE__, __func__);
+ return -1;
+ }
+
+ /* THEN derivation will fail. */
+ TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
+ EC_ERROR_ACCESS_DENIED);
+
+ return EC_SUCCESS;
+}
+
+static int test_derive_encryption_key_raw(const uint32_t *user_id_,
+ const uint8_t *salt,
+ const uint8_t *expected_key)
+{
+ uint8_t key[SBP_ENC_KEY_LEN];
+ int rv;
+
+ /*
+ * |user_id| is a global variable used as "info" in HKDF expand
+ * in derive_encryption_key().
+ */
+ memcpy(user_id, user_id_, sizeof(user_id));
+ rv = derive_encryption_key(key, salt);
+
+ TEST_ASSERT(rv == EC_SUCCESS);
+ TEST_ASSERT_ARRAY_EQ(key, expected_key, sizeof(key));
+
+ memset(user_id, 0, sizeof(user_id));
+
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_encryption_key(void)
+{
+ /*
+ * These vectors are obtained by choosing the salt and the user_id
+ * (used as "info" in HKDF), and running boringSSL's HKDF
+ * (https://boringssl.googlesource.com/boringssl/+/c0b4c72b6d4c6f4828a373ec454bd646390017d4/crypto/hkdf/)
+ * locally to get the output key. The IKM used in the run is the
+ * concatenation of |fake_rollback_secret| and |fake_tpm_seed|.
+ */
+ static const uint32_t user_id1[] = {
+ 0x608b1b0b, 0xe10d3d24, 0x0bbbe4e6, 0x807b36d9,
+ 0x2a1f8abc, 0xea38104a, 0x562d9431, 0x64d721c5,
+ };
+
+ static const uint8_t salt1[] = {
+ 0xd0, 0x88, 0x34, 0x15, 0xc0, 0xfa, 0x8e, 0x22,
+ 0x9f, 0xb4, 0xd5, 0xa9, 0xee, 0xd3, 0x15, 0x19,
+ };
+
+ static const uint8_t key1[] = {
+ 0xdb, 0x49, 0x6e, 0x1b, 0x67, 0x8a, 0x35, 0xc6,
+ 0xa0, 0x9d, 0xb6, 0xa0, 0x13, 0xf4, 0x21, 0xb3,
+ };
+
+ static const uint32_t user_id2[] = {
+ 0x2546a2ca, 0xf1891f7a, 0x44aad8b8, 0x0d6aac74,
+ 0x6a4ab846, 0x9c279796, 0x5a72eae1, 0x8276d2a3,
+ };
+
+ static const uint8_t salt2[] = {
+ 0x72, 0x6b, 0xc1, 0xe4, 0x64, 0xd4, 0xff, 0xa2,
+ 0x5a, 0xac, 0x5b, 0x0b, 0x06, 0x67, 0xe1, 0x53,
+ };
+
+ static const uint8_t key2[] = {
+ 0x8d, 0x53, 0xaf, 0x4c, 0x96, 0xa2, 0xee, 0x46,
+ 0x9c, 0xe2, 0xe2, 0x6f, 0xe6, 0x66, 0x3d, 0x3a,
+ };
+
+ /*
+ * GIVEN that the TPM seed is set, and reading the rollback secret will
+ * succeed.
+ */
+ TEST_ASSERT(fp_tpm_seed_is_set() &&
+ !mock_ctrl_rollback.get_secret_fail);
+
+ /* THEN the derivation will succeed. */
+ TEST_ASSERT(test_derive_encryption_key_raw(user_id1, salt1, key1) ==
+ EC_SUCCESS);
+
+ TEST_ASSERT(test_derive_encryption_key_raw(user_id2, salt2, key2) ==
+ EC_SUCCESS);
+
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_encryption_key_failure_rollback_fail(void)
+{
+ static uint8_t unused_key[SBP_ENC_KEY_LEN];
+ static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES]
+ = { 0 };
+
+ /* GIVEN that reading the rollback secret will fail. */
+ mock_ctrl_rollback.get_secret_fail = true;
+ /* THEN the derivation will fail. */
+ TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
+ EC_ERROR_HW_INTERNAL);
+
+ /* GIVEN that reading the rollback secret will succeed. */
+ mock_ctrl_rollback.get_secret_fail = false;
+ /* GIVEN that the TPM seed has been set. */
+ TEST_ASSERT(fp_tpm_seed_is_set());
+ /* THEN the derivation will succeed. */
+ TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
+ EC_SUCCESS);
+
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_positive_match_secret_fail_seed_not_set(void)
+{
+ static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
+
+ /* GIVEN that seed is not set. */
+ TEST_ASSERT(!fp_tpm_seed_is_set());
+ /* THEN EVEN IF the encryption salt is not trivial. */
+ TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
+ sizeof(fake_positive_match_salt)));
+
+ /* Deriving positive match secret will fail. */
+ TEST_ASSERT(derive_positive_match_secret(output,
+ fake_positive_match_salt)
+ == EC_ERROR_ACCESS_DENIED);
+
+ return EC_SUCCESS;
+
+}
+
+test_static int test_derive_new_pos_match_secret(void)
+{
+ static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
+
+ /* First, for empty user_id. */
+ memset(user_id, 0, sizeof(user_id));
+
+ /* GIVEN that the encryption salt is not trivial. */
+ TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
+ sizeof(fake_positive_match_salt)));
+ /*
+ * GIVEN that the TPM seed is set, and reading the rollback secret will
+ * succeed.
+ */
+ TEST_ASSERT(
+ fp_tpm_seed_is_set() && !mock_ctrl_rollback.get_secret_fail);
+
+ /* GIVEN that the salt is not trivial. */
+ TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
+ sizeof(fake_positive_match_salt)));
+
+ /* THEN the derivation will succeed. */
+ TEST_ASSERT(derive_positive_match_secret(output,
+ fake_positive_match_salt)
+ == EC_SUCCESS);
+ TEST_ASSERT_ARRAY_EQ(
+ output,
+ expected_positive_match_secret_for_empty_user_id,
+ sizeof(expected_positive_match_secret_for_empty_user_id));
+
+ /* Now change the user_id to be non-trivial. */
+ memcpy(user_id, fake_user_id, sizeof(fake_user_id));
+ TEST_ASSERT(derive_positive_match_secret(output,
+ fake_positive_match_salt)
+ == EC_SUCCESS);
+ TEST_ASSERT_ARRAY_EQ(
+ output,
+ expected_positive_match_secret_for_fake_user_id,
+ sizeof(expected_positive_match_secret_for_fake_user_id));
+ memset(user_id, 0, sizeof(user_id));
+
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_positive_match_secret_fail_rollback_fail(void)
+{
+ static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
+
+ /* GIVEN that reading secret from anti-rollback block will fail. */
+ mock_ctrl_rollback.get_secret_fail = true;
+ /* THEN EVEN IF the encryption salt is not trivial. */
+ TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
+ sizeof(fake_positive_match_salt)));
+
+ /* Deriving positive match secret will fail. */
+ TEST_ASSERT(derive_positive_match_secret(output,
+ fake_positive_match_salt)
+ == EC_ERROR_HW_INTERNAL);
+ mock_ctrl_rollback.get_secret_fail = false;
+
+ return EC_SUCCESS;
+}
+
+test_static int test_derive_positive_match_secret_fail_salt_trivial(void)
+{
+ static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
+
+ /* GIVEN that the salt is trivial. */
+ static const uint8_t salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES] = { 0 };
+
+ /* THEN deriving positive match secret will fail. */
+ TEST_ASSERT(derive_positive_match_secret(output, salt)
+ == EC_ERROR_INVAL);
+ return EC_SUCCESS;
+}
+
+static int test_enable_positive_match_secret_once(
+ struct positive_match_secret_state *dumb_state)
+{
+ const int8_t kIndexToEnable = 0;
+ timestamp_t now = get_time();
+
+ TEST_ASSERT(fp_enable_positive_match_secret(
+ kIndexToEnable, dumb_state) == EC_SUCCESS);
+ TEST_ASSERT(dumb_state->template_matched == kIndexToEnable);
+ TEST_ASSERT(dumb_state->readable);
+ TEST_ASSERT(dumb_state->deadline.val == now.val + (5 * SECOND));
+
+ return EC_SUCCESS;
+}
+
+test_static int test_enable_positive_match_secret(void)
+{
+ struct positive_match_secret_state dumb_state = {
+ .template_matched = FP_NO_SUCH_TEMPLATE,
+ .readable = false,
+ .deadline.val = 0,
+ };
+
+ TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
+ == EC_SUCCESS);
+
+ /* Trying to enable again before reading secret should fail. */
+ TEST_ASSERT(fp_enable_positive_match_secret(0, &dumb_state) ==
+ EC_ERROR_UNKNOWN);
+ TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
+ TEST_ASSERT(!dumb_state.readable);
+ TEST_ASSERT(dumb_state.deadline.val == 0);
+
+ return EC_SUCCESS;
+}
+
+test_static int test_disable_positive_match_secret(void)
+{
+ struct positive_match_secret_state dumb_state = {
+ .template_matched = FP_NO_SUCH_TEMPLATE,
+ .readable = false,
+ .deadline.val = 0,
+ };
+
+ TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
+ == EC_SUCCESS);
+
+ fp_disable_positive_match_secret(&dumb_state);
+ TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
+ TEST_ASSERT(!dumb_state.readable);
+ TEST_ASSERT(dumb_state.deadline.val == 0);
+
+ return EC_SUCCESS;
+}
+
+test_static int test_command_read_match_secret(void)
+{
+ int rv;
+ struct ec_params_fp_read_match_secret params;
+ struct ec_response_fp_read_match_secret resp;
+ timestamp_t now = get_time();
+
+ /* For empty user_id. */
+ memset(user_id, 0, sizeof(user_id));
+
+ /* Invalid finger index should be rejected. */
+ params.fgr = FP_NO_SUCH_TEMPLATE;
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
+ params.fgr = FP_MAX_FINGER_COUNT;
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
+
+ memset(&resp, 0, sizeof(resp));
+ /* GIVEN that finger index is valid. */
+ params.fgr = 0;
+
+ /* GIVEN that positive match secret is enabled. */
+ fp_enable_positive_match_secret(params.fgr,
+ &positive_match_secret_state);
+
+ /* GIVEN that salt is non-trivial. */
+ memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
+ sizeof(fp_positive_match_salt[0]));
+ /* THEN reading positive match secret should succeed. */
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), &resp, sizeof(resp));
+ if (rv != EC_RES_SUCCESS) {
+ ccprintf("%s:%s(): rv = %d\n", __FILE__, __func__, rv);
+ return -1;
+ }
+ /* AND the readable bit should be cleared after the read. */
+ TEST_ASSERT(positive_match_secret_state.readable == false);
+
+ TEST_ASSERT_ARRAY_EQ(
+ resp.positive_match_secret,
+ expected_positive_match_secret_for_empty_user_id,
+ sizeof(expected_positive_match_secret_for_empty_user_id));
+
+ /*
+ * Now try reading secret again.
+ * EVEN IF the deadline has not passed.
+ */
+ positive_match_secret_state.deadline.val = now.val + 1 * SECOND;
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ /*
+ * This time the command should fail because the
+ * fp_pos_match_secret_readable bit is cleared when the secret was read
+ * the first time.
+ */
+ TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
+
+ return EC_SUCCESS;
+}
+
+test_static int test_command_read_match_secret_wrong_finger(void)
+{
+ int rv;
+ struct ec_params_fp_read_match_secret params;
+
+ /* GIVEN that the finger is not the matched or enrolled finger. */
+ params.fgr = 0;
+ /*
+ * GIVEN that positive match secret is enabled for a different
+ * finger.
+ */
+ fp_enable_positive_match_secret(params.fgr + 1,
+ &positive_match_secret_state);
+
+ /* Reading secret will fail. */
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
+ return EC_SUCCESS;
+}
+
+test_static int test_command_read_match_secret_timeout(void)
+{
+ int rv;
+ struct ec_params_fp_read_match_secret params;
+
+ params.fgr = 0;
+ /* GIVEN that the read is too late. */
+ fp_enable_positive_match_secret(params.fgr,
+ &positive_match_secret_state);
+ set_time(positive_match_secret_state.deadline);
+
+ /* EVEN IF encryption salt is non-trivial. */
+ memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
+ sizeof(fp_positive_match_salt[0]));
+ /* Reading secret will fail. */
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ TEST_ASSERT(rv == EC_RES_TIMEOUT);
+ return EC_SUCCESS;
+}
+
+test_static int test_command_read_match_secret_unreadable(void)
+{
+ int rv;
+ struct ec_params_fp_read_match_secret params;
+
+ params.fgr = 0;
+ /* GIVEN that the readable bit is not set. */
+ fp_enable_positive_match_secret(params.fgr,
+ &positive_match_secret_state);
+ positive_match_secret_state.readable = false;
+
+ /* EVEN IF the finger is just matched. */
+ TEST_ASSERT(positive_match_secret_state.template_matched
+ == params.fgr);
+
+ /* EVEN IF encryption salt is non-trivial. */
+ memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
+ sizeof(fp_positive_match_salt[0]));
+ /* Reading secret will fail. */
+ rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
+ sizeof(params), NULL, 0);
+ TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
+ return EC_SUCCESS;
+}
+
+void run_test(void)
+{
+ RUN_TEST(test_hkdf_expand);
+ RUN_TEST(test_derive_encryption_key_failure_seed_not_set);
+ RUN_TEST(test_derive_positive_match_secret_fail_seed_not_set);
+
+ /*
+ * Set the TPM seed here because it can only be set once and cannot be
+ * cleared.
+ */
+ ASSERT(fpsensor_state_mock_set_tpm_seed(default_fake_tpm_seed) ==
+ EC_SUCCESS);
+
+ /* The following test requires TPM seed to be already set. */
+ RUN_TEST(test_derive_encryption_key);
+ RUN_TEST(test_derive_encryption_key_failure_rollback_fail);
+ RUN_TEST(test_derive_new_pos_match_secret);
+ RUN_TEST(test_derive_positive_match_secret_fail_rollback_fail);
+ RUN_TEST(test_derive_positive_match_secret_fail_salt_trivial);
+ RUN_TEST(test_enable_positive_match_secret);
+ RUN_TEST(test_disable_positive_match_secret);
+ RUN_TEST(test_command_read_match_secret);
+ RUN_TEST(test_command_read_match_secret_wrong_finger);
+ RUN_TEST(test_command_read_match_secret_timeout);
+ RUN_TEST(test_command_read_match_secret_unreadable);
+ test_print_result();
+}