/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Atlas board-specific configuration */ #include "adc_chip.h" #include "bd99992gw.h" #include "board_config.h" #include "charge_manager.h" #include "charger.h" #include "charge_state.h" #include "chipset.h" #include "console.h" #include "driver/als_opt3001.h" #include "driver/pmic_bd99992gw.h" #include "driver/charger/isl923x.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "espi.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_8042_sharedlib.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "motion_sense.h" #include "power_button.h" #include "power.h" #include "pwm_chip.h" #include "pwm.h" #include "spi.h" #include "switch.h" #include "system.h" #include "system_chip.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args) #define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args) static void tcpc_alert_event(enum gpio_signal signal) { int port = -1; switch (signal) { case GPIO_USB_C0_PD_INT_ODL: port = 0; break; case GPIO_USB_C1_PD_INT_ODL: port = 1; break; default: return; } schedule_deferred_pd_interrupt(port); } #include "gpio_list.h" /* Keyboard scan. Increase output_settle_us to 80us from default 50us. */ __override struct keyboard_scan_config keyscan_config = { .output_settle_us = 80, .debounce_down_us = 9 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 3 * MSEC, .min_post_scan_delay_us = 1000, .poll_timeout_us = 100 * MSEC, .actual_key_mask = { 0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { 3, 0, 10000 }, [PWM_CH_DB0_LED_BLUE] = { 0, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB0_LED_RED] = { 2, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB0_LED_GREEN] = { 6, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_BLUE] = { 1, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_RED] = { 7, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_GREEN] = { 5, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_ROP_EC_ACOK, GPIO_LID_OPEN, GPIO_MECH_PWR_BTN_ODL, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); const struct adc_t adc_channels[] = { /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = { "AMON_BMON", NPCX_ADC_CH2, ADC_MAX_VOLT*1000/18, ADC_READ_MAX+1, 0 }, /* * ISL9238 PSYS output is 1.44 uA/W over 12.4K resistor, to read * 0.8V @ 45 W, i.e. 56250 uW/mV. Using ADC_MAX_VOLT*56250 and * ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we * only divide by 2 (enough to avoid precision issues). */ [ADC_PSYS] = { "PSYS", NPCX_ADC_CH3, ADC_MAX_VOLT*56250*2/(ADC_READ_MAX+1), 2, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"power", I2C_PORT_POWER, 100, GPIO_EC_I2C0_POWER_SCL, GPIO_EC_I2C0_POWER_SDA}, {"tcpc0", I2C_PORT_TCPC0, 1000, GPIO_EC_I2C1_USB_C0_SCL, GPIO_EC_I2C1_USB_C0_SDA}, {"tcpc1", I2C_PORT_TCPC1, 1000, GPIO_EC_I2C2_USB_C1_SCL, GPIO_EC_I2C2_USB_C1_SDA}, {"sensor", I2C_PORT_SENSOR, 100, GPIO_EC_I2C3_SENSOR_3V3_SCL, GPIO_EC_I2C3_SENSOR_3V3_SDA}, {"battery", I2C_PORT_BATTERY, 100, GPIO_EC_I2C4_BATTERY_SCL, GPIO_EC_I2C4_BATTERY_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* Charger Chips */ const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_CHARGER, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { /* left port */ .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC0, .addr_flags = I2C_ADDR_TCPC_FLAGS, }, .drv = &ps8xxx_tcpm_drv, /* Alert is active-low, push-pull */ .flags = 0, }, { /* right port */ .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC1, .addr_flags = I2C_ADDR_TCPC_FLAGS, }, .drv = &ps8xxx_tcpm_drv, /* Alert is active-low, push-pull */ .flags = 0, }, }; const struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .usb_port = 0, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, { .usb_port = 1, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, }; void board_reset_pd_mcu(void) { gpio_set_level(GPIO_USB_PD_RST_L, 0); msleep(PS8XXX_RST_L_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_PD_RST_L, 1); } void board_tcpc_init(void) { /* Only reset TCPC if not sysjump */ if (!system_jumped_late()) board_reset_pd_mcu(); gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (int port = 0; port < CONFIG_USB_PD_PORT_MAX_COUNT; ++port) usb_mux_hpd_update(port, USB_PD_MUX_HPD_LVL_DEASSERTED | USB_PD_MUX_HPD_IRQ_DEASSERTED); } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0}, /* BD99992GW temp sensors are only readable in S0 */ {"Ambient", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM0}, {"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1}, {"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2}, {"eMMC", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM3}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_RESETIRQ1, &vrfault) != EC_SUCCESS) return; if (!(vrfault & BIT(4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PWRSTAT1, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PWRSTAT2, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_RESETIRQ1, BIT(4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PWRSTAT1, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PWRSTAT2, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_VCCIOCNT, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_V18ACNT, 0x2a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_V085ACNT, 0x2a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_VCCIOCNT, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_V18ACNT, 0x6a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_V085ACNT, 0x6a); } __override void power_board_handle_host_sleep_event( enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { board_report_pmic_fault("SYSJUMP"); /* Clear power source events */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PWRSRCINT, 0xff); /* Disable power button shutdown timer */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_PBCONFIG, 0x00); if (system_jumped_late()) return; /* DISCHGCNT1 - enable 100 ohm discharge on VCCIO */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_DISCHGCNT1, 0x01); /* * DISCHGCNT2 - enable 100 ohm discharge on * V5.0A, V3.3DSW, V3.3A and V1.8A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_DISCHGCNT2, 0x55); /* * DISCHGCNT3 - enable 500 ohm discharge on * V1.8U_2.5U * DISCHGCNT3 - enable 100 ohm discharge on * V12U, V1.00A, V0.85A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_DISCHGCNT3, 0xd5); /* DISCHGCNT4 - enable 100 ohm discharge on V33S, V18S, V100S */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_DISCHGCNT4, 0x15); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_VRMODECTRL, 0x1f); /* V5ADS3CNT - boost V5A_DS3 by 2% */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_V5ADS3CNT, 0x1a); board_pmic_disable_slp_s0_vr_decay(); } DECLARE_HOOK(HOOK_INIT, board_pmic_init, HOOK_PRIO_DEFAULT); void board_hibernate(void) { int p; /* Configure PSL pins */ for (p = 0; p < hibernate_wake_pins_used; p++) system_config_psl_mode(hibernate_wake_pins[p]); /* * Enter PSL mode. Note that on Atlas, simply enabling PSL mode does * not cut the EC's power. Therefore, we'll need to cut off power via * the ROP PMIC afterwards. */ system_enter_psl_mode(); /* Cut off DSW power via the ROP PMIC. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, BD99992GW_REG_SDWNCTRL, BD99992GW_SDWNCTRL_SWDN); /* Wait for power to be cut. */ while (1) ; } /* Initialize board. */ static void board_init(void) { if (system_get_board_version() < ATLAS_REV_FIXED_EC_WP) { int dflags; CPRINTS("Applying EC_WP_L workaround"); dflags = gpio_get_default_flags(GPIO_EC_WP_L); gpio_set_flags(GPIO_EC_WP_L, dflags | GPIO_PULL_UP); } /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { /* charge port is a physical port */ int is_real_port = (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_MAX_COUNT); /* check if we are sourcing VBUS on the port */ int is_source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN : GPIO_USB_C1_5V_EN); if (is_real_port && is_source) { CPRINTS("No charging from p%d", charge_port); return EC_ERROR_INVAL; } CPRINTS("New chg p%d", charge_port); if (charge_port == CHARGE_PORT_NONE) { /* Disable both ports */ gpio_set_level(GPIO_EN_USB_C0_CHARGE_L, 1); gpio_set_level(GPIO_EN_USB_C1_CHARGE_L, 1); } else { /* Make sure non-charging port is disabled */ gpio_set_level(charge_port ? GPIO_EN_USB_C0_CHARGE_L : GPIO_EN_USB_C1_CHARGE_L, 1); /* Enable charging port */ gpio_set_level(charge_port ? GPIO_EN_USB_C1_CHARGE_L : GPIO_EN_USB_C0_CHARGE_L, 0); } return EC_SUCCESS; } /* * Limit the input current to 95% negotiated limit, * to account for the charger chip margin. */ static int charger_derate(int current) { return current * 95 / 100; } static void board_charger_init(void) { charger_set_input_current_limit(CHARGER_SOLO, charger_derate(PD_MAX_CURRENT_MA)); } DECLARE_HOOK(HOOK_INIT, board_charger_init, HOOK_PRIO_DEFAULT); /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { charge_ma = charger_derate(charge_ma); charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } static void board_chipset_suspend(void) { gpio_set_level(GPIO_KBD_BL_EN, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); static void board_chipset_resume(void) { gpio_set_level(GPIO_KBD_BL_EN, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); int board_get_version(void) { static int ver; if (!ver) { /* * Read the board EC ID on the tristate strappings * using ternary encoding: 0 = 0, 1 = 1, Hi-Z = 2 */ uint8_t id0, id1, id2; id0 = gpio_get_ternary(GPIO_BOARD_VERSION1); id1 = gpio_get_ternary(GPIO_BOARD_VERSION2); id2 = gpio_get_ternary(GPIO_BOARD_VERSION3); ver = (id2 * 9) + (id1 * 3) + id0; CPRINTS("Board ID = %d", ver); } return ver; } static struct opt3001_drv_data_t g_opt3001_data = { .scale = 1, .uscale = 0, .offset = 0, }; struct motion_sensor_t motion_sensors[] = { [LID_ALS] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_OPT3001, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &opt3001_drv, .drv_data = &g_opt3001_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = OPT3001_I2C_ADDR_FLAGS, .rot_standard_ref = NULL, .default_range = 0x2b11a1, /* from nocturne */ .min_frequency = OPT3001_LIGHT_MIN_FREQ, .max_frequency = OPT3001_LIGHT_MAX_FREQ, .config = { /* Sensor on in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 1000, }, }, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */ const struct motion_sensor_t *motion_als_sensors[] = { &motion_sensors[LID_ALS], }; BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT);