/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Cheza board-specific configuration */ #include "adc_chip.h" #include "als.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "chipset.h" #include "extpower.h" #include "driver/accelgyro_bmi160.h" #include "driver/als_opt3001.h" #include "driver/charger/isl923x.h" #include "driver/ppc/sn5s330.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "gpio.h" #include "hooks.h" #include "lid_switch.h" #include "pi3usb9281.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "system.h" #include "shi_chip.h" #include "switch.h" #include "task.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usbc_ppc.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) #define USB_PD_PORT_ANX3429 0 #define USB_PD_PORT_PS8751 1 /* Forward declaration */ static void tcpc_alert_event(enum gpio_signal signal); static void vbus0_evt(enum gpio_signal signal); static void vbus1_evt(enum gpio_signal signal); static void usb0_evt(enum gpio_signal signal); static void usb1_evt(enum gpio_signal signal); static void ppc_interrupt(enum gpio_signal signal); static void anx74xx_cable_det_interrupt(enum gpio_signal signal); static void usb1_oc_evt(enum gpio_signal signal); #include "gpio_list.h" /* GPIO Interrupt Handlers */ static void tcpc_alert_event(enum gpio_signal signal) { int port = -1; switch (signal) { case GPIO_USB_C0_PD_INT_ODL: port = 0; break; case GPIO_USB_C1_PD_INT_ODL: port = 1; break; default: return; } schedule_deferred_pd_interrupt(port); } static void vbus0_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(0, !gpio_get_level(GPIO_USB_C0_VBUS_DET_L)); task_wake(TASK_ID_PD_C0); } static void vbus1_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(1, !gpio_get_level(GPIO_USB_C1_VBUS_DET_L)); task_wake(TASK_ID_PD_C1); } static void usb0_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0); } static void usb1_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0); } static void anx74xx_cable_det_handler(void) { int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET); int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_R_L); /* * A cable_det low->high transition was detected. If following the * debounce time, cable_det is high, and reset_n is low, then ANX3429 is * currently in standby mode and needs to be woken up. Set the * TCPC_RESET event which will bring the ANX3429 out of standby * mode. Setting this event is gated on reset_n being low because the * ANX3429 will always set cable_det when transitioning to normal mode * and if in normal mode, then there is no need to trigger a tcpc reset. */ if (cable_det && !reset_n) task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_cable_det_handler); static void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* debounce for 2 msec */ hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC)); } static void ppc_interrupt(enum gpio_signal signal) { /* Only port-0 uses PPC chip */ sn5s330_interrupt(0); } static void usb1_oc_evt_deferred(void) { /* Only port-1 has overcurrent GPIO interrupt */ board_overcurrent_event(1, 1); } DECLARE_DEFERRED(usb1_oc_evt_deferred); static void usb1_oc_evt(enum gpio_signal signal) { /* Switch the context to handle the event */ hook_call_deferred(&usb1_oc_evt_deferred_data, 0); } /* Wake-up pins for hibernate */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_LID_OPEN, GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, GPIO_EC_RST_ODL, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); /* ADC channels */ const struct adc_t adc_channels[] = { /* Base detection */ [ADC_BASE_DET] = { "BASE_DET", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, /* Measure VBUS through a 1/10 voltage divider */ [ADC_VBUS] = { "VBUS", NPCX_ADC_CH1, ADC_MAX_VOLT * 10, ADC_READ_MAX + 1, 0 }, /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = { "AMON_BMON", NPCX_ADC_CH2, ADC_MAX_VOLT * 1000 / 18, ADC_READ_MAX + 1, 0 }, /* * ISL9238 PSYS output is 1.44 uA/W over 5.6K resistor, to read * 0.8V @ 99 W, i.e. 124000 uW/mV. Using ADC_MAX_VOLT*124000 and * ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we * only divide by 2 (enough to avoid precision issues). */ [ADC_PSYS] = { "PSYS", NPCX_ADC_CH3, ADC_MAX_VOLT * 124000 * 2 / (ADC_READ_MAX + 1), 2, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); const struct pwm_t pwm_channels[] = { /* TODO(waihong): Assign a proper frequency. */ [PWM_CH_DISPLIGHT] = { 5, 0, 4800 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { [SDM845_AP_RST_ASSERTED] = { GPIO_AP_RST_L, POWER_SIGNAL_ACTIVE_LOW | POWER_SIGNAL_DISABLE_AT_BOOT, "AP_RST_ASSERTED"}, [SDM845_PS_HOLD] = { GPIO_PS_HOLD, POWER_SIGNAL_ACTIVE_HIGH, "PS_HOLD"}, [SDM845_PMIC_FAULT_L] = { GPIO_PMIC_FAULT_L, POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT, "PMIC_FAULT_L"}, [SDM845_POWER_GOOD] = { GPIO_POWER_GOOD, POWER_SIGNAL_ACTIVE_HIGH, "POWER_GOOD"}, [SDM845_WARM_RESET] = { GPIO_WARM_RESET_L, POWER_SIGNAL_ACTIVE_HIGH, "WARM_RESET_L"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"power", I2C_PORT_POWER, 100, GPIO_I2C0_SCL, GPIO_I2C0_SDA}, /* TODO(b/78189419): ANX7428 operates at 400kHz initially. */ {"tcpc0", I2C_PORT_TCPC0, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"tcpc1", I2C_PORT_TCPC1, 1000, GPIO_I2C2_SCL, GPIO_I2C2_SDA}, {"eeprom", I2C_PORT_EEPROM, 400, GPIO_I2C5_SCL, GPIO_I2C5_SDA}, {"sensor", I2C_PORT_SENSOR, 400, GPIO_I2C7_SCL, GPIO_I2C7_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* Power Path Controller */ struct ppc_config_t ppc_chips[] = { { .i2c_port = I2C_PORT_TCPC0, .i2c_addr_flags = SN5S330_ADDR0_FLAGS, .drv = &sn5s330_drv }, /* * Port 1 uses two power switches instead: * NX5P3290: to source VBUS * NX20P5090: to sink VBUS (charge battery) * which are controlled directly by EC GPIOs. */ }; unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { /* Alert is active-low, open-drain */ [USB_PD_PORT_ANX3429] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC0, .addr_flags = 0x28, }, .drv = &anx74xx_tcpm_drv, .flags = TCPC_FLAGS_ALERT_OD, }, [USB_PD_PORT_PS8751] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC1, .addr_flags = 0x0B, }, .drv = &ps8xxx_tcpm_drv, }, }; const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_CHARGER, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; const unsigned int chg_cnt = ARRAY_SIZE(chg_chips); /* * Port-0 USB mux driver. * * The USB mux is handled by TCPC chip and the HPD is handled by AP. * Redirect to anx74xx_tcpm_usb_mux_driver but override the get() function * to check the HPD_IRQ mask from virtual_usb_mux_driver. */ static int port0_usb_mux_init(int port) { return anx74xx_tcpm_usb_mux_driver.init(port); } static int port0_usb_mux_set(int i2c_addr, mux_state_t mux_state) { return anx74xx_tcpm_usb_mux_driver.set(i2c_addr, mux_state); } static int port0_usb_mux_get(int port, mux_state_t *mux_state) { int rv; mux_state_t virtual_mux_state; rv = anx74xx_tcpm_usb_mux_driver.get(port, mux_state); rv |= virtual_usb_mux_driver.get(port, &virtual_mux_state); if (virtual_mux_state & USB_PD_MUX_HPD_IRQ) *mux_state |= USB_PD_MUX_HPD_IRQ; return rv; } const struct usb_mux_driver port0_usb_mux_driver = { .init = port0_usb_mux_init, .set = port0_usb_mux_set, .get = port0_usb_mux_get, }; /* * Port-1 USB mux driver. * * The USB mux is handled by TCPC chip and the HPD is handled by AP. * Redirect to tcpci_tcpm_usb_mux_driver but override the get() function * to check the HPD_IRQ mask from virtual_usb_mux_driver. */ static int port1_usb_mux_init(int port) { return tcpci_tcpm_usb_mux_driver.init(port); } static int port1_usb_mux_set(int i2c_addr, mux_state_t mux_state) { return tcpci_tcpm_usb_mux_driver.set(i2c_addr, mux_state); } static int port1_usb_mux_get(int port, mux_state_t *mux_state) { int rv; mux_state_t virtual_mux_state; rv = tcpci_tcpm_usb_mux_driver.get(port, mux_state); rv |= virtual_usb_mux_driver.get(port, &virtual_mux_state); if (virtual_mux_state & USB_PD_MUX_HPD_IRQ) *mux_state |= USB_PD_MUX_HPD_IRQ; return rv; } static int port1_usb_mux_enter_low_power(int port) { return tcpci_tcpm_usb_mux_driver.enter_low_power_mode(port); } const struct usb_mux_driver port1_usb_mux_driver = { .init = &port1_usb_mux_init, .set = &port1_usb_mux_set, .get = &port1_usb_mux_get, .enter_low_power_mode = &port1_usb_mux_enter_low_power, }; struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .driver = &port0_usb_mux_driver, .hpd_update = &virtual_hpd_update, }, { .driver = &port1_usb_mux_driver, .hpd_update = &virtual_hpd_update, } }; /* BC1.2 */ struct pi3usb9281_config pi3usb9281_chips[] = { { .i2c_port = I2C_PORT_POWER, }, { .i2c_port = I2C_PORT_EEPROM, }, }; BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) == CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT); /* Initialize board. */ static void board_init(void) { /* Enable BC1.2 VBUS detection */ gpio_enable_interrupt(GPIO_USB_C0_VBUS_DET_L); gpio_enable_interrupt(GPIO_USB_C1_VBUS_DET_L); /* Enable BC1.2 interrupts */ gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L); gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L); /* Enable interrupt for BMI160 sensor */ gpio_enable_interrupt(GPIO_ACCEL_GYRO_INT_L); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); void board_tcpc_init(void) { int port; /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) { /* TODO(crosbug.com/p/61098): How long do we need to wait? */ board_reset_pd_mcu(); } /* Enable PPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_SWCTL_INT_ODL); /* Enable TCPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_MAX_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { /* * Turn off display backlight in S3. AP has its own control. The EC's * and the AP's will be AND'ed together in hardware. */ gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S0 transition */ static void board_chipset_resume(void) { /* Turn on display backlight in S0. */ gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); /* Called on AP S5 -> S3 transition */ static void board_chipset_startup(void) { gpio_set_flags(GPIO_USB_C1_OC_ODL, GPIO_INT_FALLING | GPIO_PULL_UP); gpio_enable_interrupt(GPIO_USB_C1_OC_ODL); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S5 transition */ static void board_chipset_shutdown(void) { /* 5V is off in S5. Disable pull-up to prevent current leak. */ gpio_disable_interrupt(GPIO_USB_C1_OC_ODL); gpio_set_flags(GPIO_USB_C1_OC_ODL, GPIO_INT_FALLING); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); /** * Power on (or off) a single TCPC. * minimum on/off delays are included. * * @param port Port number of TCPC. * @param mode 0: power off, 1: power on. */ void board_set_tcpc_power_mode(int port, int mode) { if (port != USB_PD_PORT_ANX3429) return; if (mode) { gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 1); msleep(ANX74XX_PWR_H_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 1); } else { gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 0); msleep(ANX74XX_RST_L_PWR_L_DELAY_MS); gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); } } void board_reset_pd_mcu(void) { /* Assert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 0); gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 0); msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS)); gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 1); /* Disable TCPC0 (anx3429) power */ gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); board_set_tcpc_power_mode(USB_PD_PORT_ANX3429, 1); } int board_vbus_sink_enable(int port, int enable) { if (port == USB_PD_PORT_ANX3429) { /* Port 0 is controlled by a PPC SN5S330 */ return ppc_vbus_sink_enable(port, enable); } else if (port == USB_PD_PORT_PS8751) { /* Port 1 is controlled by a power switch NX20P5090 */ gpio_set_level(GPIO_EN_USB_C1_CHARGE_EC_L, !enable); return EC_SUCCESS; } return EC_ERROR_INVAL; } int board_is_sourcing_vbus(int port) { if (port == USB_PD_PORT_ANX3429) { /* Port 0 is controlled by a PPC SN5S330 */ return ppc_is_sourcing_vbus(port); } else if (port == USB_PD_PORT_PS8751) { /* Port 1 is controlled by a power switch NX5P3290 */ return gpio_get_level(GPIO_EN_USB_C1_5V_OUT); } return EC_ERROR_INVAL; } void board_overcurrent_event(int port, int is_overcurrented) { /* TODO(b/120231371): Notify AP */ CPRINTS("p%d: overcurrent!", port); } int board_set_active_charge_port(int port) { int is_real_port = (port >= 0 && port < CONFIG_USB_PD_PORT_MAX_COUNT); int i; int rv; if (!is_real_port && port != CHARGE_PORT_NONE) return EC_ERROR_INVAL; CPRINTS("New chg p%d", port); if (port == CHARGE_PORT_NONE) { /* Disable all ports. */ for (i = 0; i < CONFIG_USB_PD_PORT_MAX_COUNT; i++) { rv = board_vbus_sink_enable(i, 0); if (rv) { CPRINTS("Disabling p%d sink path failed.", i); return rv; } } return EC_SUCCESS; } /* Check if the port is sourcing VBUS. */ if (board_is_sourcing_vbus(port)) { CPRINTF("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports' sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < CONFIG_USB_PD_PORT_MAX_COUNT; i++) { if (i == port) continue; if (board_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink path disable failed.", i); } /* Enable requested charge port. */ if (board_vbus_sink_enable(port, 1)) { CPRINTS("p%d: sink path enable failed.", port); return EC_ERROR_UNKNOWN; } return EC_SUCCESS; } void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* * Ignore lower charge ceiling on PD transition if our battery is * critical, as we may brownout. */ if (supplier == CHARGE_SUPPLIER_PD && charge_ma < 1500 && charge_get_percent() < CONFIG_CHARGER_MIN_BAT_PCT_FOR_POWER_ON) { CPRINTS("Using max ilim %d", max_ma); charge_ma = max_ma; } charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) if (gpio_get_level(GPIO_USB_C0_PD_RST_R_L)) status |= PD_STATUS_TCPC_ALERT_0; if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) if (gpio_get_level(GPIO_USB_C1_PD_RST_ODL)) status |= PD_STATUS_TCPC_ALERT_1; return status; } /* Mutexes */ static struct mutex g_lid_mutex; static struct bmi160_drv_data_t g_bmi160_data; static struct opt3001_drv_data_t g_opt3001_data = { .scale = 1, .uscale = 0, .offset = 0, }; /* Matrix to rotate accelerometer into standard reference frame */ const mat33_fp_t base_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; struct motion_sensor_t motion_sensors[] = { /* * Note: bmi160: supports accelerometer and gyro sensor * Requirement: accelerometer sensor must init before gyro sensor * DO NOT change the order of the following table. */ [LID_ACCEL] = { .name = "Accel", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs */ .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [LID_GYRO] = { .name = "Gyro", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, [LID_ALS] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_OPT3001, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &opt3001_drv, .drv_data = &g_opt3001_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = OPT3001_I2C_ADDR_FLAGS, .rot_standard_ref = NULL, .default_range = 0x10000, /* scale = 1; uscale = 0 */ .min_frequency = OPT3001_LIGHT_MIN_FREQ, .max_frequency = OPT3001_LIGHT_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 1000, }, }, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);