/* Copyright 2015 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifdef PRINT_PRIMES #include "console.h" #endif #include "dcrypto.h" #include "fips.h" #include "internal.h" #include "trng.h" void bn_init(struct LITE_BIGNUM *b, void *buf, size_t len) { DCRYPTO_bn_wrap(b, buf, len); always_memset(buf, 0x00, len); } void DCRYPTO_bn_wrap(struct LITE_BIGNUM *b, void *buf, size_t len) { /* Note: only word-multiple sized buffers accepted. */ if (len & 3) { fips_throw_err(FIPS_FATAL_BN_MATH); return; } b->dmax = len / LITE_BN_BYTES; b->d = (struct access_helper *) buf; } int bn_eq(const struct LITE_BIGNUM *a, const struct LITE_BIGNUM *b) { int i; uint32_t top = 0; for (i = a->dmax - 1; i > b->dmax - 1; --i) top |= BN_DIGIT(a, i); if (top) return 0; for (i = b->dmax - 1; i > a->dmax - 1; --i) top |= BN_DIGIT(b, i); if (top) return 0; for (i = MIN(a->dmax, b->dmax) - 1; i >= 0; --i) if (BN_DIGIT(a, i) != BN_DIGIT(b, i)) return 0; return 1; } static void bn_copy(struct LITE_BIGNUM *dst, const struct LITE_BIGNUM *src) { dst->dmax = src->dmax; memcpy(dst->d, src->d, bn_size(dst)); } int bn_check_topbit(const struct LITE_BIGNUM *N) { return BN_DIGIT(N, N->dmax - 1) >> 31; } /* a[n]. */ int bn_is_bit_set(const struct LITE_BIGNUM *a, int n) { int i, j; if (n < 0) return 0; i = n / LITE_BN_BITS2; j = n % LITE_BN_BITS2; if (a->dmax <= i) return 0; return (BN_DIGIT(a, i) >> j) & 1; } static int bn_set_bit(const struct LITE_BIGNUM *a, int n) { int i, j; if (n < 0) return 0; i = n / LITE_BN_BITS2; j = n % LITE_BN_BITS2; if (a->dmax <= i) return 0; BN_DIGIT(a, i) |= 1 << j; return 1; } /* a[] >= b[]. */ /* TODO(ngm): constant time. */ static int bn_gte(const struct LITE_BIGNUM *a, const struct LITE_BIGNUM *b) { int i; uint32_t top = 0; for (i = a->dmax - 1; i > b->dmax - 1; --i) top |= BN_DIGIT(a, i); if (top) return 1; for (i = b->dmax - 1; i > a->dmax - 1; --i) top |= BN_DIGIT(b, i); if (top) return 0; for (i = MIN(a->dmax, b->dmax) - 1; BN_DIGIT(a, i) == BN_DIGIT(b, i) && i > 0; --i) ; return BN_DIGIT(a, i) >= BN_DIGIT(b, i); } /* c[] = c[] - a[], assumes c > a. */ uint32_t bn_sub(struct LITE_BIGNUM *c, const struct LITE_BIGNUM *a) { int64_t A = 0; int i; for (i = 0; i < a->dmax; i++) { A += (uint64_t) BN_DIGIT(c, i) - BN_DIGIT(a, i); BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } for (; A && i < c->dmax; i++) { A += (uint64_t) BN_DIGIT(c, i); BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } return (uint32_t) A; /* 0 or -1. */ } /* c[] = c[] - a[], negative numbers in 2's complement representation. */ /* Returns borrow bit. */ static uint32_t bn_signed_sub(struct LITE_BIGNUM *c, int *c_neg, const struct LITE_BIGNUM *a, int a_neg) { uint32_t carry = 0; uint64_t A = 1; int i; for (i = 0; i < a->dmax; ++i) { A += (uint64_t) BN_DIGIT(c, i) + ~BN_DIGIT(a, i); BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } for (; i < c->dmax; ++i) { A += (uint64_t) BN_DIGIT(c, i) + 0xFFFFFFFF; BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } A &= 0x01; carry = (!*c_neg && a_neg && A) || (*c_neg && !a_neg && !A); *c_neg = carry ? *c_neg : (*c_neg + !a_neg + A) & 0x01; return carry; } /* c[] = c[] + a[]. */ uint32_t bn_add(struct LITE_BIGNUM *c, const struct LITE_BIGNUM *a) { uint64_t A = 0; int i; for (i = 0; i < a->dmax; ++i) { A += (uint64_t) BN_DIGIT(c, i) + BN_DIGIT(a, i); BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } for (; A && i < c->dmax; ++i) { A += (uint64_t) BN_DIGIT(c, i); BN_DIGIT(c, i) = (uint32_t) A; A >>= 32; } return (uint32_t) A; /* 0 or 1. */ } /* c[] = c[] + a[], negative numbers in 2's complement representation. */ /* Returns carry bit. */ static uint32_t bn_signed_add(struct LITE_BIGNUM *c, int *c_neg, const struct LITE_BIGNUM *a, int a_neg) { uint32_t A = bn_add(c, a); uint32_t carry; carry = (!*c_neg && !a_neg && A) || (*c_neg && a_neg && !A); *c_neg = carry ? *c_neg : (*c_neg + a_neg + A) & 0x01; return carry; } /* r[] <<= 1. */ static uint32_t bn_lshift(struct LITE_BIGNUM *r) { int i; uint32_t w; uint32_t carry = 0; for (i = 0; i < r->dmax; i++) { w = (BN_DIGIT(r, i) << 1) | carry; carry = BN_DIGIT(r, i) >> 31; BN_DIGIT(r, i) = w; } return carry; } /* r[] >>= 1. Handles 2's complement negative numbers. */ static void bn_rshift(struct LITE_BIGNUM *r, uint32_t carry, uint32_t neg) { int i; uint32_t ones = ~0; uint32_t highbit = (!carry && neg) || (carry && !neg); for (i = 0; i < r->dmax - 1; ++i) { uint32_t accu; ones &= BN_DIGIT(r, i); accu = (BN_DIGIT(r, i) >> 1); accu |= (BN_DIGIT(r, i + 1) << (LITE_BN_BITS2 - 1)); BN_DIGIT(r, i) = accu; } ones &= BN_DIGIT(r, i); BN_DIGIT(r, i) = (BN_DIGIT(r, i) >> 1) | (highbit << (LITE_BN_BITS2 - 1)); if (ones == ~0 && highbit && neg) memset(r->d, 0x00, bn_size(r)); /* -1 >> 1 = 0. */ } /* Montgomery c[] += a * b[] / R % N. */ /* TODO(ngm): constant time. */ static void bn_mont_mul_add(struct LITE_BIGNUM *c, const uint32_t a, const struct LITE_BIGNUM *b, const uint32_t nprime, const struct LITE_BIGNUM *N) { uint32_t A, B, d0; int i; { register uint64_t tmp; tmp = BN_DIGIT(c, 0) + (uint64_t) a * BN_DIGIT(b, 0); A = tmp >> 32; d0 = (uint32_t) tmp * (uint32_t) nprime; tmp = (uint32_t)tmp + (uint64_t) d0 * BN_DIGIT(N, 0); B = tmp >> 32; } for (i = 0; i < N->dmax - 1;) { register uint64_t tmp; tmp = A + (uint64_t) a * BN_DIGIT(b, i + 1) + BN_DIGIT(c, i + 1); A = tmp >> 32; tmp = B + (uint64_t) d0 * BN_DIGIT(N, i + 1) + (uint32_t) tmp; BN_DIGIT(c, i) = (uint32_t) tmp; B = tmp >> 32; ++i; } { uint64_t tmp = (uint64_t) A + B; BN_DIGIT(c, i) = (uint32_t) tmp; A = tmp >> 32; /* 0 or 1. */ if (A) bn_sub(c, N); } } /* Montgomery c[] = a[] * b[] / R % N. */ static void bn_mont_mul(struct LITE_BIGNUM *c, const struct LITE_BIGNUM *a, const struct LITE_BIGNUM *b, const uint32_t nprime, const struct LITE_BIGNUM *N) { int i; for (i = 0; i < N->dmax; i++) BN_DIGIT(c, i) = 0; bn_mont_mul_add(c, a ? BN_DIGIT(a, 0) : 1, b, nprime, N); for (i = 1; i < N->dmax; i++) bn_mont_mul_add(c, a ? BN_DIGIT(a, i) : 0, b, nprime, N); } /* Mongomery R * R % N, R = 1 << (1 + log2N). */ /* TODO(ngm): constant time. */ static void bn_compute_RR(struct LITE_BIGNUM *RR, const struct LITE_BIGNUM *N) { int i; bn_sub(RR, N); /* R - N = R % N since R < 2N */ /* Repeat 2 * R % N, log2(R) times. */ for (i = 0; i < N->dmax * LITE_BN_BITS2; i++) { /** * assume RR = N - x, where x is positive, less than N, * let n = RR & N bit size (RR created same size as N). * * if RR * 2 overflows it means 2^n > RR >= 2^(n-1), * 2^n > N - x >= 2^(n-1) * ==> N >= 2^(n-1) + x * * 2*RR - 2^n < N because: * ((2^(n-1) + x) - x)*2 - 2^n < 2^(n-1) + x * 0 < 2^(n-1) + x */ if (bn_lshift(RR)) if (bn_sub(RR, N) != -1) fips_throw_err(FIPS_FATAL_BN_MATH); /* RR < N is invariant of the loop */ if (bn_gte(RR, N)) bn_sub(RR, N); } } /* Montgomery nprime = -1 / n0 % (2 ^ 32). */ static uint32_t bn_compute_nprime(const uint32_t n0) { int i; uint32_t ninv = 1; /* Repeated Hensel lifting. */ for (i = 0; i < 5; i++) ninv *= 2 - (n0 * ninv); return ~ninv + 1; /* Two's complement. */ } /* TODO(ngm): this implementation not timing or side-channel safe by * any measure. */ static void bn_modexp_internal(struct LITE_BIGNUM *output, const struct LITE_BIGNUM *input, const struct LITE_BIGNUM *exp, const struct LITE_BIGNUM *N) { int i; uint32_t nprime; uint32_t RR_buf[RSA_MAX_WORDS]; uint32_t acc_buf[RSA_MAX_WORDS]; uint32_t aR_buf[RSA_MAX_WORDS]; struct LITE_BIGNUM RR; struct LITE_BIGNUM acc; struct LITE_BIGNUM aR; bn_init(&RR, RR_buf, bn_size(N)); bn_init(&acc, acc_buf, bn_size(N)); bn_init(&aR, aR_buf, bn_size(N)); nprime = bn_compute_nprime(BN_DIGIT(N, 0)); bn_compute_RR(&RR, N); bn_mont_mul(&acc, NULL, &RR, nprime, N); /* R = 1 * RR / R % N */ bn_mont_mul(&aR, input, &RR, nprime, N); /* aR = a * RR / R % N */ /* TODO(ngm): burn stack space and use windowing. */ for (i = exp->dmax * LITE_BN_BITS2 - 1; i >= 0; i--) { bn_mont_mul(output, &acc, &acc, nprime, N); if (bn_is_bit_set(exp, i)) { bn_mont_mul(&acc, output, &aR, nprime, N); } else { struct LITE_BIGNUM tmp = *output; *output = acc; acc = tmp; } /* Poke the watchdog. * TODO(ngm): may be unnecessary with * a faster implementation. */ #ifdef CONFIG_WATCHDOG fips_vtable->watchdog_reload(); #endif } bn_mont_mul(output, NULL, &acc, nprime, N); /* Convert out. */ /* Copy to output buffer if necessary. */ if (acc.d != (struct access_helper *) acc_buf) { memcpy(acc.d, acc_buf, bn_size(output)); *output = acc; } /* TODO(ngm): constant time. */ if (bn_sub(output, N)) bn_add(output, N); /* Final reduce. */ output->dmax = N->dmax; always_memset(RR_buf, 0, sizeof(RR_buf)); always_memset(acc_buf, 0, sizeof(acc_buf)); always_memset(aR_buf, 0, sizeof(aR_buf)); } /* output = input ^ exp % N */ int bn_modexp(struct LITE_BIGNUM *output, const struct LITE_BIGNUM *input, const struct LITE_BIGNUM *exp, const struct LITE_BIGNUM *N) { #ifndef CR50_NO_BN_ASM if ((bn_bits(N) & 255) == 0) { /* Use hardware support for standard key sizes. */ return dcrypto_modexp(output, input, exp, N); } #endif bn_modexp_internal(output, input, exp, N); return 1; } /* output = input ^ exp % N */ int bn_modexp_word(struct LITE_BIGNUM *output, const struct LITE_BIGNUM *input, uint32_t exp, const struct LITE_BIGNUM *N) { #ifndef CR50_NO_BN_ASM if ((bn_bits(N) & 255) == 0) { /* Use hardware support for standard key sizes. */ return dcrypto_modexp_word(output, input, exp, N); } #endif { struct LITE_BIGNUM pubexp; DCRYPTO_bn_wrap(&pubexp, &exp, sizeof(exp)); bn_modexp_internal(output, input, &pubexp, N); return 1; } } /* output = input ^ exp % N */ int bn_modexp_blinded(struct LITE_BIGNUM *output, const struct LITE_BIGNUM *input, const struct LITE_BIGNUM *exp, const struct LITE_BIGNUM *N, uint32_t pubexp) { #ifndef CR50_NO_BN_ASM if ((bn_bits(N) & 255) == 0) { /* Use hardware support for standard key sizes. */ return dcrypto_modexp_blinded(output, input, exp, N, pubexp); } #endif bn_modexp_internal(output, input, exp, N); return 1; } /* c[] += a * b[] */ static uint32_t bn_mul_add(struct LITE_BIGNUM *c, uint32_t a, const struct LITE_BIGNUM *b, uint32_t offset) { int i; uint64_t carry = 0; for (i = 0; i < b->dmax; i++) { carry += BN_DIGIT(c, offset + i) + (uint64_t) BN_DIGIT(b, i) * a; BN_DIGIT(c, offset + i) = (uint32_t) carry; carry >>= 32; } return carry; } /* c[] = a[] * b[] */ void DCRYPTO_bn_mul(struct LITE_BIGNUM *c, const struct LITE_BIGNUM *a, const struct LITE_BIGNUM *b) { int i; uint32_t carry = 0; memset(c->d, 0, bn_size(c)); for (i = 0; i < a->dmax; i++) { BN_DIGIT(c, i + b->dmax - 1) = carry; carry = bn_mul_add(c, BN_DIGIT(a, i), b, i); } BN_DIGIT(c, i + b->dmax - 1) = carry; } /* c[] = a[] * b[] */ static void bn_mul_ex(struct LITE_BIGNUM *c, const struct LITE_BIGNUM *a, int a_len, const struct LITE_BIGNUM *b) { int i; uint32_t carry = 0; memset(c->d, 0, bn_size(c)); for (i = 0; i < a_len; i++) { BN_DIGIT(c, i + b->dmax - 1) = carry; carry = bn_mul_add(c, BN_DIGIT(a, i), b, i); } BN_DIGIT(c, i + b->dmax - 1) = carry; } /* Functions to convert between uint32_t and uint64_t */ static inline uint32_t lo32(uint64_t v) { return (uint32_t)v; } static inline uint32_t hi32(uint64_t v) { return (uint32_t)(v >> 32); } static inline uint64_t make64(uint32_t hi, uint32_t lo) { return (((uint64_t)hi) << 32) | lo; } static inline uint32_t lo16(uint32_t v) { return (uint32_t)(v)&0xffff; } static inline uint32_t hi16(uint32_t v) { return (uint32_t)(v >> 16); } /* make Clang's host behavior of clz match Soteria and avoid UBSAN error */ static inline int clz(unsigned int x) { return (x) ? __builtin_clz(x) : 32; } /** * Unsigned division of 64-bit integer with 32-bit divisor, used to implement * Knuth's long division algorithm. For platforms which don't support hardware * 64 by 32 division we have to either rely on compiler builtins (__udivdi3, * __aeabi_uldivmod) or implement this code explicitly. * Due to potential build issues with dependency on compiler run-time libs, * use our own implementation. * * Algorithm is adapted from GNU's libgcc and optimized for the use case. * */ #define udiv_qrnnd(q, r, n1, n0, d) \ { \ uint32_t __d1, __d0, __q1, __q0, __r1, __r0, __m; \ __d1 = hi16(d); \ __d0 = lo16(d); \ \ __q1 = (n1) / __d1; \ __r1 = (n1) - (__q1 * __d1); \ __m = __q1 * __d0; \ __r1 = (__r1 << 16) | hi16(n0); \ if (__r1 < __m) { \ __q1--; \ __r1 += (d); \ if (__r1 >= (d)) \ if (__r1 < __m) \ __q1--, __r1 += (d); \ } \ __r1 -= __m; \ __q0 = __r1 / __d1; \ __r0 = __r1 - (__q0 * __d1); \ __m = __q0 * __d0; \ __r0 = (__r0 << 16) | lo16(n0); \ if (__r0 < __m) { \ __q0--; \ __r0 += (d); \ if (__r0 >= (d)) \ if (__r0 < __m) \ __q0--, __r0 += (d); \ } \ __r0 -= __m; \ \ (q) = (__q1 << 16) | __q0; \ (r) = __r0; \ } uint64_t udiv32(uint64_t n, uint32_t d0) { uint32_t n0, n1, n2, q0, q1, bm; n0 = lo32(n); n1 = hi32(n); /* if it's 32-bit division or division by zero, use hardware directly */ if (d0 == 0 || n1 == 0) return n0 / d0; bm = clz(d0); if (d0 > n1) { /* 0q = nn / 0D */ /* make the most significant bit of the denominator set. */ if (bm != 0) { d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (32 - bm)); n0 = n0 << bm; } q1 = 0; } else { /* qq = NN / 0d */ if (bm == 0) { n1 -= d0; q1 = 1; } else { /* Normalize. */ d0 = d0 << bm; n2 = n1 >> (32 - bm); n1 = (n1 << bm) | (n0 >> (32 - bm)); n0 = n0 << bm; udiv_qrnnd(q1, n1, n2, n1, d0); } } udiv_qrnnd(q0, n0, n1, n0, d0); /* Remainder in n0 >> bm, but we don't use it */ return make64(q1, q0); } static int bn_div_word_ex(struct LITE_BIGNUM *q, struct LITE_BIGNUM *r, const struct LITE_BIGNUM *u, int m, uint32_t div) { uint32_t rem = 0; int i; for (i = m - 1; i >= 0; --i) { uint64_t tmp = ((uint64_t)rem << 32) + BN_DIGIT(u, i); uint32_t qd = udiv32(tmp, div); BN_DIGIT(q, i) = qd; rem = tmp - (uint64_t)qd * div; } if (r != NULL) BN_DIGIT(r, 0) = rem; return 1; } /* * Knuth's long division. * * Returns 0 on error. * |u| >= |v| * v[n-1] must not be 0 * r gets |v| digits written to. * q gets |u| - |v| + 1 digits written to. */ static int bn_div_ex(struct LITE_BIGNUM *q, struct LITE_BIGNUM *r, const struct LITE_BIGNUM *u, int m, const struct LITE_BIGNUM *v, int n) { uint32_t vtop; int s, i, j; uint32_t vn[RSA_MAX_WORDS]; /* Normalized v */ uint32_t un[RSA_MAX_WORDS + 1]; /* Normalized u */ if (m < n || n <= 0) return 0; vtop = BN_DIGIT(v, n - 1); if (vtop == 0) return 0; if (n == 1) return bn_div_word_ex(q, r, u, m, vtop); /* Compute shift factor to make v have high bit set */ s = clz(vtop); vtop <<= s; /* Normalize u and v into un and vn. * Note un always gains a leading digit */ if (s != 0) { for (i = n - 1; i > 0; i--) vn[i] = (BN_DIGIT(v, i) << s) | (BN_DIGIT(v, i - 1) >> (32 - s)); vn[0] = BN_DIGIT(v, 0) << s; un[m] = BN_DIGIT(u, m - 1) >> (32 - s); for (i = m - 1; i > 0; i--) un[i] = (BN_DIGIT(u, i) << s) | (BN_DIGIT(u, i - 1) >> (32 - s)); un[0] = BN_DIGIT(u, 0) << s; } else { for (i = 0; i < n; ++i) vn[i] = BN_DIGIT(v, i); for (i = 0; i < m; ++i) un[i] = BN_DIGIT(u, i); un[m] = 0; } /* Main loop, reducing un digit by digit */ for (j = m - n; j >= 0; j--) { uint32_t qd; int64_t t, k; /* Estimate quotient digit */ if (un[j + n] == vn[n - 1]) { /* Maxed out */ qd = 0xFFFFFFFF; } else { /* Fine tune estimate */ uint64_t rhat = ((uint64_t)un[j + n] << 32) + un[j + n - 1]; qd = udiv32(rhat, vn[n - 1]); rhat = rhat - (uint64_t)qd * vn[n - 1]; while ((rhat >> 32) == 0 && (uint64_t)qd * vn[n - 2] > (rhat << 32) + un[j + n - 2]) { qd = qd - 1; rhat = rhat + vn[n - 1]; } } /* Multiply and subtract */ k = 0; for (i = 0; i < n; i++) { uint64_t p = (uint64_t)qd * vn[i]; t = un[i + j] - k - (p & 0xFFFFFFFF); un[i + j] = t; k = (p >> 32) - (t >> 32); } t = un[j + n] - k; un[j + n] = t; /* If borrowed, add one back and adjust estimate */ if (t < 0) { k = 0; qd = qd - 1; for (i = 0; i < n; i++) { t = (uint64_t)un[i + j] + vn[i] + k; un[i + j] = t; k = t >> 32; } un[j + n] = un[j + n] + k; } BN_DIGIT(q, j) = qd; } if (r != NULL) { /* Denormalize un into r */ if (s != 0) { for (i = 0; i < n - 1; i++) BN_DIGIT(r, i) = (un[i] >> s) | (un[i + 1] << (32 - s)); BN_DIGIT(r, n - 1) = un[n - 1] >> s; } else { for (i = 0; i < n; i++) BN_DIGIT(r, i) = un[i]; } } return 1; } static void bn_set_bn(struct LITE_BIGNUM *d, const struct LITE_BIGNUM *src, size_t n) { size_t i = 0; for (; i < n && i < d->dmax; ++i) BN_DIGIT(d, i) = BN_DIGIT(src, i); for (; i < d->dmax; ++i) BN_DIGIT(d, i) = 0; } static size_t bn_digits(const struct LITE_BIGNUM *a) { size_t n = a->dmax - 1; while (BN_DIGIT(a, n) == 0 && n) --n; return n + 1; } int DCRYPTO_bn_div(struct LITE_BIGNUM *quotient, struct LITE_BIGNUM *remainder, const struct LITE_BIGNUM *src, const struct LITE_BIGNUM *divisor) { int src_len = bn_digits(src); int div_len = bn_digits(divisor); int i, result; if (src_len < div_len) return 0; result = bn_div_ex(quotient, remainder, src, src_len, divisor, div_len); if (!result) return 0; /* 0-pad the destinations. */ for (i = src_len - div_len + 1; i < quotient->dmax; ++i) BN_DIGIT(quotient, i) = 0; if (remainder) { for (i = div_len; i < remainder->dmax; ++i) BN_DIGIT(remainder, i) = 0; } return result; } /* * Extended Euclid modular inverse. * * https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm * #Computing_multiplicative_inverses_in_modular_structures: * function inverse(a, n) * t := 0; newt := 1; * r := n; newr := a; * while newr ≠ 0 * quotient := r div newr * (t, newt) := (newt, t - quotient * newt) * (r, newr) := (newr, r - quotient * newr) * if r > 1 then return "a is not invertible" * if t < 0 then t := t + n * return t */ int bn_modinv_vartime(struct LITE_BIGNUM *dst, const struct LITE_BIGNUM *src, const struct LITE_BIGNUM *mod) { uint32_t R_buf[RSA_MAX_WORDS]; uint32_t nR_buf[RSA_MAX_WORDS]; uint32_t Q_buf[RSA_MAX_WORDS]; uint32_t nT_buf[RSA_MAX_WORDS + 1]; /* Can go negative, hence +1 */ uint32_t T_buf[RSA_MAX_WORDS + 1]; /* Can go negative */ uint32_t tmp_buf[2 * RSA_MAX_WORDS + 1]; /* needs to hold Q*nT */ struct LITE_BIGNUM R; struct LITE_BIGNUM nR; struct LITE_BIGNUM Q; struct LITE_BIGNUM T; struct LITE_BIGNUM nT; struct LITE_BIGNUM tmp; struct LITE_BIGNUM *pT = &T; struct LITE_BIGNUM *pnT = &nT; struct LITE_BIGNUM *pR = &R; struct LITE_BIGNUM *pnR = &nR; struct LITE_BIGNUM *bnswap; int t_neg = 0; int nt_neg = 0; int iswap; size_t r_len, nr_len; bn_init(&R, R_buf, bn_size(mod)); bn_init(&nR, nR_buf, bn_size(mod)); bn_init(&Q, Q_buf, bn_size(mod)); bn_init(&T, T_buf, bn_size(mod) + sizeof(uint32_t)); bn_init(&nT, nT_buf, bn_size(mod) + sizeof(uint32_t)); bn_init(&tmp, tmp_buf, bn_size(mod) + sizeof(uint32_t)); r_len = bn_digits(mod); nr_len = bn_digits(src); BN_DIGIT(&nT, 0) = 1; /* T = 0, nT = 1 */ bn_set_bn(&R, mod, r_len); /* R = n */ bn_set_bn(&nR, src, nr_len); /* nR = input */ /* Trim nR */ while (nr_len && BN_DIGIT(&nR, nr_len - 1) == 0) --nr_len; while (nr_len) { size_t q_len = r_len - nr_len + 1; /* (r, nr) = (nr, r % nr), q = r / nr */ if (!bn_div_ex(&Q, pR, pR, r_len, pnR, nr_len)) return 0; /* swap R and nR */ r_len = nr_len; bnswap = pR; pR = pnR; pnR = bnswap; /* trim nR and Q */ while (nr_len && BN_DIGIT(pnR, nr_len - 1) == 0) --nr_len; while (q_len && BN_DIGIT(&Q, q_len - 1) == 0) --q_len; Q.dmax = q_len; /* compute t - q*nt */ if (q_len == 1 && BN_DIGIT(&Q, 0) <= 2) { /* Doing few direct subs is faster than mul + sub */ uint32_t n = BN_DIGIT(&Q, 0); while (n--) bn_signed_sub(pT, &t_neg, pnT, nt_neg); } else { /* Call bn_mul_ex with smallest operand first */ if (nt_neg) { /* Negative numbers use all digits, * thus pnT is large */ bn_mul_ex(&tmp, &Q, q_len, pnT); } else { int nt_len = bn_digits(pnT); if (q_len < nt_len) bn_mul_ex(&tmp, &Q, q_len, pnT); else bn_mul_ex(&tmp, pnT, nt_len, &Q); } bn_signed_sub(pT, &t_neg, &tmp, nt_neg); } /* swap T and nT */ bnswap = pT; pT = pnT; pnT = bnswap; iswap = t_neg; t_neg = nt_neg; nt_neg = iswap; } if (r_len != 1 || BN_DIGIT(pR, 0) != 1) { /* gcd not 1; no direct inverse */ return 0; } if (t_neg) bn_signed_add(pT, &t_neg, mod, 0); bn_set_bn(dst, pT, bn_digits(pT)); return 1; } #define PRIME1 3 /* * The array below is an encoding of the first 4096 primes, starting with * PRIME1. Using 4096 of the first primes results in at least 5% improvement * in running time over using the first 2048. * * Most byte entries in the array contain two sequential differentials between * two adjacent prime numbers, each differential halved (as the difference is * always even) and packed into 4 bits. * * If a halved differential value exceeds 0xf (and as such does not fit into 4 * bits), a zero is placed in the array followed by the value literal (no * halving). * * If out of two consecutive differencials only the second one exceeds 0xf, * the first one still is put into the array in its own byte prepended by a * zero. */ const uint8_t PRIME_DELTAS[] = { 1, 18, 18, 18, 49, 50, 18, 51, 19, 33, 50, 52, 33, 33, 39, 35, 21, 19, 50, 51, 21, 18, 22, 98, 18, 49, 83, 51, 19, 33, 87, 33, 39, 53, 18, 52, 51, 35, 66, 69, 21, 19, 35, 66, 18, 100, 36, 35, 97, 147, 83, 49, 53, 51, 19, 50, 22, 81, 35, 49, 98, 52, 84, 84, 51, 36, 50, 66, 117, 97, 81, 33, 87, 33, 39, 33, 42, 36, 84, 35, 55, 35, 52, 54, 35, 21, 19, 81, 81, 57, 33, 35, 52, 51, 177, 84, 83, 52, 98, 51, 19, 101, 145, 35, 19, 33, 38, 19, 0, 34, 51, 73, 87, 33, 35, 66, 19, 101, 18, 18, 54, 100, 99, 35, 66, 66, 114, 49, 35, 19, 90, 50, 28, 33, 86, 21, 67, 51, 147, 33, 101, 100, 135, 50, 18, 21, 99, 57, 24, 27, 52, 50, 18, 67, 81, 87, 83, 97, 33, 86, 24, 19, 33, 84, 156, 35, 72, 18, 72, 18, 67, 50, 97, 179, 19, 35, 115, 33, 50, 54, 51, 114, 54, 67, 45, 149, 66, 49, 59, 97, 132, 38, 117, 18, 67, 50, 18, 52, 33, 53, 21, 66, 117, 97, 50, 24, 114, 52, 50, 148, 83, 52, 86, 114, 51, 30, 21, 66, 114, 70, 54, 35, 165, 24, 210, 22, 50, 99, 66, 75, 18, 22, 225, 51, 50, 49, 98, 97, 81, 129, 131, 168, 66, 18, 27, 70, 53, 18, 49, 53, 22, 81, 87, 50, 52, 51, 134, 18, 115, 36, 84, 51, 179, 21, 114, 57, 21, 114, 21, 114, 73, 35, 18, 49, 98, 171, 97, 35, 49, 59, 19, 131, 97, 54, 129, 35, 114, 25, 197, 49, 81, 81, 83, 21, 21, 52, 245, 21, 67, 89, 54, 97, 147, 35, 57, 21, 115, 33, 44, 22, 56, 67, 57, 129, 35, 19, 53, 54, 105, 19, 41, 76, 33, 35, 22, 39, 245, 54, 115, 86, 18, 52, 53, 18, 115, 50, 49, 81, 134, 73, 35, 97, 51, 62, 55, 36, 84, 105, 33, 44, 99, 24, 51, 117, 114, 243, 51, 67, 33, 99, 33, 59, 49, 41, 18, 97, 50, 211, 50, 69, 0, 32, 129, 50, 18, 21, 115, 36, 83, 162, 19, 242, 69, 51, 67, 98, 49, 50, 49, 81, 131, 162, 103, 227, 162, 148, 50, 55, 51, 81, 86, 69, 21, 70, 92, 18, 67, 36, 149, 51, 19, 86, 21, 51, 52, 53, 49, 51, 53, 76, 59, 25, 36, 95, 73, 33, 83, 19, 41, 70, 152, 49, 99, 81, 81, 53, 114, 193, 129, 81, 90, 33, 36, 131, 49, 104, 66, 63, 21, 19, 35, 52, 50, 99, 70, 39, 101, 195, 99, 27, 73, 83, 114, 19, 84, 50, 63, 117, 22, 81, 129, 156, 147, 137, 49, 146, 49, 84, 83, 52, 35, 21, 22, 35, 49, 98, 121, 35, 162, 67, 36, 39, 50, 118, 33, 242, 195, 54, 103, 50, 18, 147, 100, 50, 97, 111, 129, 59, 115, 86, 49, 36, 83, 60, 115, 36, 105, 81, 81, 35, 163, 39, 33, 39, 54, 197, 52, 81, 242, 49, 98, 115, 0, 34, 100, 53, 18, 165, 72, 21, 114, 22, 56, 52, 36, 35, 67, 54, 50, 51, 73, 42, 38, 21, 49, 86, 18, 163, 243, 36, 86, 49, 225, 50, 24, 97, 53, 76, 99, 147, 39, 50, 100, 54, 35, 99, 97, 138, 33, 89, 66, 114, 19, 179, 115, 53, 49, 81, 33, 177, 35, 54, 55, 86, 52, 0, 4, 0, 36, 118, 50, 49, 99, 104, 21, 75, 22, 50, 57, 22, 50, 100, 54, 35, 99, 22, 98, 115, 131, 21, 73, 0, 6, 0, 34, 30, 27, 49, 86, 19, 36, 179, 21, 66, 52, 38, 150, 162, 51, 66, 24, 97, 84, 81, 35, 118, 180, 225, 42, 33, 39, 86, 22, 129, 228, 180, 35, 55, 36, 99, 50, 162, 145, 99, 35, 121, 84, 0, 10, 0, 32, 53, 51, 19, 131, 22, 62, 21, 72, 52, 53, 202, 81, 81, 98, 58, 33, 105, 81, 81, 42, 141, 36, 50, 99, 70, 99, 36, 177, 135, 83, 102, 115, 42, 38, 49, 51, 132, 177, 228, 50, 162, 108, 162, 69, 24, 22, 0, 12, 0, 34, 18, 54, 51, 67, 33, 60, 42, 83, 55, 35, 49, 99, 81, 83, 162, 210, 19, 177, 194, 49, 35, 195, 66, 0, 2, 0, 34, 52, 134, 21, 21, 52, 36, 107, 55, 45, 33, 101, 66, 70, 39, 56, 52, 35, 52, 53, 97, 51, 132, 51, 101, 19, 146, 51, 54, 148, 53, 73, 39, 57, 84, 86, 19, 102, 0, 36, 35, 66, 49, 41, 99, 67, 50, 145, 33, 194, 51, 127, 50, 54, 58, 36, 36, 51, 47, 21, 100, 84, 195, 98, 114, 49, 231, 129, 99, 42, 83, 51, 69, 103, 87, 135, 87, 56, 52, 56, 165, 19, 33, 38, 21, 19, 179, 18, 148, 84, 177, 89, 114, 18, 145, 35, 69, 31, 47, 21, 25, 41, 55, 81, 42, 0, 36, 50, 55, 42, 87, 179, 31, 101, 145, 39, 59, 145, 99, 36, 36, 53, 22, 149, 120, 114, 51, 19, 33, 225, 227, 18, 55, 38, 120, 114, 52, 50, 51, 52, 36, 39, 132, 50, 100, 129, 84, 35, 211, 84, 35, 103, 242, 123, 70, 35, 69, 55, 83, 21, 102, 115, 57, 83, 73, 35, 19, 81, 84, 51, 81, 149, 22, 35, 69, 103, 98, 69, 51, 162, 120, 117, 69, 97, 147, 101, 97, 33, 99, 36, 0, 4, 0, 44, 33, 33, 86, 51, 114, 51, 52, 0, 6, 0, 36, 146, 49, 99, 51, 39, 182, 25, 83, 220, 33, 33, 39, 35, 52, 134, 0, 2, 0, 42, 33, 44, 51, 25, 39, 62, 151, 53, 97, 54, 243, 35, 55, 33, 194, 51, 213, 147, 67, 63, 38, 97, 129, 50, 105, 19, 45, 99, 98, 204, 99, 22, 228, 35, 97, 147, 35, 58, 129, 51, 149, 49, 36, 51, 200, 52, 83, 123, 72, 49, 98, 27, 73, 0, 34, 19, 146, 51, 69, 73, 50, 18, 72, 22, 99, 146, 51, 49, 54, 90, 105, 35, 24, 21, 114, 241, 86, 28, 56, 69, 22, 179, 24, 165, 22, 105, 86, 49, 81, 53, 145, 99, 35, 28, 225, 33, 81, 134, 75, 19, 33, 83, 166, 84, 99, 51, 41, 18, 105, 22, 50, 24, 102, 114, 73, 38, 115, 50, 67, 42, 101, 114, 24, 22, 242, 60, 172, 84, 101, 99, 102, 52, 135, 50, 0, 6, 0, 36, 165, 246, 18, 30, 103, 59, 66, 147, 121, 35, 19, 0, 34, 145, 131, 145, 194, 19, 99, 101, 67, 134, 69, 0, 14, 0, 40, 49, 50, 103, 33, 33, 36, 53, 51, 19, 51, 99, 197, 21, 54, 51, 115, 0, 6, 0, 52, 163, 81, 84, 86, 97, 50, 120, 70, 59, 21, 67, 177, 179, 69, 102, 21, 54, 18, 117, 19, 146, 100, 150, 51, 35, 55, 33, 102, 35, 153, 97, 134, 73, 93, 35, 67, 50, 21, 162, 52, 42, 81, 0, 34, 18, 193, 102, 83, 22, 243, 104, 97, 185, 103, 81, 102, 33, 35, 97, 137, 0, 2, 0, 40, 72, 52, 81, 41, 69, 70, 41, 25, 81, 33, 36, 225, 59, 99, 121, 35, 67, 53, 66, 25, 83, 171, 67, 242, 18, 147, 241, 36, 50, 54, 0, 14, 0, 34, 115, 33, 50, 114, 19, 225, 35, 69, 21, 21, 18, 241, 102, 89, 103, 81, 99, 83, 118, 39, 41, 21, 66, 69, 105, 148, 57, 135, 51, 87, 35, 22, 98, 51, 97, 129, 99, 39, 50, 22, 146, 0, 36, 150, 97, 33, 36, 98, 0, 36, 57, 22, 83, 108, 67, 56, 97, 149, 165, 19, 146, 0, 2, 0, 40, 49, 129, 36, 149, 99, 21, 66, 54, 21, 148, 50, 162, 0, 6, 0, 36, 49, 83, 195, 120, 57, 21, 165, 67, 35, 21, 22, 33, 36, 83, 105, 118, 132, 56, 66, 19, 156, 149, 97, 39, 83, 51, 150, 30, 151, 134, 124, 107, 49, 84, 33, 39, 99, 35, 114, 18, 243, 19, 81, 251, 18, 52, 51, 134, 99, 66, 28, 98, 52, 51, 81, 54, 231, 50, 100, 54, 35, 115, 101, 51, 67, 50, 18, 70, 39, 149, 24, 58, 53, 66, 0, 30, 0, 36, 100, 182, 19, 104, 51, 25, 45, 36, 149, 69, 55, 42, 185, 100, 230, 51, 67, 108, 135, 39, 99, 86, 163, 36, 150, 149, 18, 165, 114, 49, 92, 145, 42, 135, 87, 50, 58, 53, 49, 99, 245, 67, 35, 0, 8, 0, 40, 18, 22, 146, 52, 83, 153, 22, 132, 50, 51, 0, 2, 0, 52, 114, 168, 18, 54, 19, 102, 50, 117, 51, 117, 120, 67, 98, 75, 49, 155, 49, 147, 135, 83, 97, 50, 73, 104, 18, 114, 70, 111, 132, 33, 59, 100, 83, 51, 115, 149, 97, 81, 45, 38, 66, 148, 87, 131, 52, 83, 67, 101, 165, 66, 109, 146, 105, 63, 52, 59, 97, 35, 49, 81, 35, 49, 59, 147, 150, 70, 53, 97, 129, 81, 89, 58, 33, 59, 51, 147, 118, 129, 51, 39, 98, 25, 0, 16, 0, 36, 99, 126, 22, 54, 50, 24, 244, 195, 245, 25, 35, 100, 177, 59, 145, 81, 95, 30, 55, 131, 168, 19, 0, 4, 0, 32, 33, 35, 22, 35, 54, 19, 35, 67, 42, 0, 4, 0, 32, 84, 129, 177, 35, 67, 135, 41, 66, 163, 102, 53, 21, 22, 230, 145, 149, 69, 0, 48, 18, 52, 81, 95, 0, 2, 0, 36, 53, 49, 146, 52, 135, 131, 114, 162, 49, 86, 19, 99, 50, 97, 50, 99, 66, 19, 149, 52, 99, 177, 54, 146, 115, 42, 56, 66, 75, 70, 51, 134, 159, 66, 18, 61, 39, 203, 49, 53, 55, 51, 101, 49, 101, 100, 153, 83, 72, 51, 72, 162, 21, 21, 99, 67, 90, 89, 210, 63, 18, 67, 102, 146, 75, 49, 0, 12, 0, 34, 57, 99, 30, 120, 114, 118, 35, 49, 0, 36, 35, 166, 195, 177, 137, 102, 145, 51, 50, 55, 33, 180, 99, 83, 70, 150, 53, 27, 115, 50, 147, 171, 22, 194, 153, 27, 18, 100, 101, 114, 25, 0, 16, 0, 38, 51, 54, 83, 100, 50, 55, 243, 84, 179, 70, 81, 81, 53, 21, 105, 163, 36, 179, 63, 55, 54, 99, 81, 95, 24, 66, 19, 146, 19, 45, 36, 53, 18, 52, 35, 246, 19, 50, 171, 66, 18, 0, 72, 66, 75, 18, 117, 18, 163, 89, 58, 131, 67, 42, 107, 18, 22, 89, 27, 57, 241, 87, 84, 0, 16, 0, 50, 53, 69, 99, 145, 179, 18, 52, 51, 89, 27, 24, 117, 49, 101, 162, 115, 0, 4, 0, 36, 18, 54, 18, 118, 50, 49, 50, 165, 21, 54, 28, 102, 51, 44, 18, 193, 50, 52, 131, 21, 103, 0, 6, 0, 34, 55, 50, 31, 180, 35, 66, 30, 19, 45, 155, 19, 131, 24, 97, 98, 51, 117, 52, 98, 145, 84, 131, 63, 21, 145, 84, 36, 108, 0, 40, 22, 83, 97, 98, 18, 57, 118, 50, 127, 36, 84, 53, 148, 39, 131, 66, 49, 81, 98, 18, 52, 35, 0, 32, 197, 73, 81, 53, 18, 147, 97, 129, 179, 52, 146, 150, 67, 42, 63, 182, 19, 146, 0, 62, 33, 99, 81, 102, 225, 39, 179, 19, 53, 114, 21, 52, 87, 83, 22, 185, 69, 150, 22, 38, 21, 19, 147, 0, 6, 0, 34, 49, 98, 57, 145, 131, 52, 53, 148, 84, 81, 41, 214, 177, 33, 179, 55, 131, 165, 97, 0, 18, 0, 42, 44, 19, 86, 19, 84, 35, 102, 66, 54, 250, 60, 53, 97, 90, 51, 38, 117, 150, 67, 98, 117, 22, 248, 22, 50, 18, 61, 41, 18, 55, 0, 54, 0, 6, 0, 52, 24, 51, 109, 33, 59, 49, 102, 53, 145, 102, 89, 99, 67, 83, 66, 18, 172, 51, 87, 81, 179, 117, 210, 148, 102, 86, 52, 131, 67, 59, 21, 165, 0, 6, 0, 44, 147, 81, 35, 114, 210, 22, 84, 36, 98, 100, 180, 53, 147, 52, 54, 36, 149, 99, 97, 50, 24, 102, 117, 115, 86, 22, 50, 49, 98, 211, 147, 83, 25, 84, 45, 90, 56, 166, 84, 81, 131, 165, 162, 241, 36, 129, 146, 19, 89, 103, 147, 138, 50, 67, 35, 100, 81, 99, 33, 53, 24, 103, 83, 67, 225, 57, 0, 30, 0, 34, 24, 97, 152, 52, 84, 84, 0, 10, 0, 44, 51, 42, 33, 39, 228, 56, 127, 63, 39, 83, 52, 41, 99, 27, 100, 54, 39, 35, 18, 154, 56, 0, 38, 129, 35, 0, 2, 0, 40, 0, 42, 114, 49, 197, 49, 149, 97, 129, 56, 52, 33, 83, 69, 25, 132, 105, 99, 101, 51, }; static uint32_t bn_mod_word16(const struct LITE_BIGNUM *p, uint16_t word) { int i; uint32_t rem = 0; for (i = p->dmax - 1; i >= 0; i--) { rem = ((rem << 16) | ((BN_DIGIT(p, i) >> 16) & 0xFFFFUL)) % word; rem = ((rem << 16) | (BN_DIGIT(p, i) & 0xFFFFUL)) % word; } return rem; } static uint32_t bn_mod_f4(const struct LITE_BIGNUM *d) { int i = bn_size(d) - 1; const uint8_t *p = (const uint8_t *) (d->d); uint32_t rem = 0; for (; i >= 0; --i) { uint32_t q = RSA_F4 * (rem >> 8); if (rem < q) q -= RSA_F4; rem <<= 8; rem |= p[i]; rem -= q; } if (rem >= RSA_F4) rem -= RSA_F4; return rem; } #define bn_is_even(b) !bn_is_bit_set((b), 0) /* From HAC Fact 4.48 (ii), the following number of * rounds suffice for ~2^145 confidence. Each additional * round provides about another k/100 bits of confidence. */ #define ROUNDS_1024 7 #define ROUNDS_512 15 #define ROUNDS_384 22 /* Miller-Rabin from HAC, algorithm 4.24. */ static int bn_probable_prime(const struct LITE_BIGNUM *p) { int j; int s = 0; uint32_t ONE_buf = 1; uint8_t r_buf[RSA_MAX_BYTES / 2]; uint8_t A_buf[RSA_MAX_BYTES / 2]; uint8_t y_buf[RSA_MAX_BYTES / 2]; struct LITE_BIGNUM ONE; struct LITE_BIGNUM r; struct LITE_BIGNUM A; struct LITE_BIGNUM y; const int rounds = bn_bits(p) >= 1024 ? ROUNDS_1024 : bn_bits(p) >= 512 ? ROUNDS_512 : ROUNDS_384; /* Failsafe: update rounds table above to support smaller primes. */ if (bn_bits(p) < 384) return 0; if (bn_size(p) > sizeof(r_buf)) return 0; DCRYPTO_bn_wrap(&ONE, &ONE_buf, sizeof(ONE_buf)); DCRYPTO_bn_wrap(&r, r_buf, bn_size(p)); bn_copy(&r, p); /* r * (2 ^ s) = p - 1 */ bn_sub(&r, &ONE); while (bn_is_even(&r)) { bn_rshift(&r, 0, 0); s++; } DCRYPTO_bn_wrap(&A, A_buf, bn_size(p)); DCRYPTO_bn_wrap(&y, y_buf, bn_size(p)); for (j = 0; j < rounds; j++) { int i; /* pick random A, such that A < p */ if (!fips_rand_bytes(A_buf, bn_size(&A))) return 0; for (i = A.dmax - 1; i >= 0; i--) { while (BN_DIGIT(&A, i) > BN_DIGIT(p, i)) { uint64_t rnd = fips_trng_rand32(); if (!rand_valid(rnd)) return 0; BN_DIGIT(&A, i) = (uint32_t)rnd; } if (BN_DIGIT(&A, i) < BN_DIGIT(p, i)) break; } /* y = a ^ r mod p */ bn_modexp(&y, &A, &r, p); if (bn_eq(&y, &ONE)) continue; bn_add(&y, &ONE); if (bn_eq(&y, p)) continue; bn_sub(&y, &ONE); /* y = y ^ 2 mod p */ for (i = 0; i < s - 1; i++) { bn_copy(&A, &y); bn_modexp_word(&y, &A, 2, p); if (bn_eq(&y, &ONE)) return 0; bn_add(&y, &ONE); if (bn_eq(&y, p)) { bn_sub(&y, &ONE); break; } bn_sub(&y, &ONE); } bn_add(&y, &ONE); if (!bn_eq(&y, p)) return 0; } return 1; } /* #define PRINT_PRIMES to enable printing predefined prime numbers' set. */ static void print_primes(uint16_t prime) { #ifdef PRINT_PRIMES static uint16_t num_per_line; static uint16_t max_printed; if (prime <= max_printed) return; if (!(num_per_line++ % 8)) { if (num_per_line == 1) ccprintf("Prime numbers:"); ccprintf("\n"); cflush(); } max_printed = prime; ccprintf(" %6d", prime); #endif } int DCRYPTO_bn_generate_prime(struct LITE_BIGNUM *p) { int i; int j; /* Using a sieve size of 2048-bits results in a failure rate * of ~0.5% @ 1024-bit candidates. The failure rate rises to ~6% * if the sieve size is halved. */ uint8_t composites_buf[256]; struct LITE_BIGNUM composites; uint16_t prime = PRIME1; /* Set top two bits, as well as LSB. */ bn_set_bit(p, 0); bn_set_bit(p, bn_bits(p) - 1); bn_set_bit(p, bn_bits(p) - 2); /* Save on trial division by marking known composites. */ bn_init(&composites, composites_buf, sizeof(composites_buf)); for (i = 0; i < ARRAY_SIZE(PRIME_DELTAS); i++) { uint16_t rem; uint8_t unpacked_deltas[2]; uint8_t packed_deltas = PRIME_DELTAS[i]; int k; int m; if (packed_deltas) { unpacked_deltas[0] = (packed_deltas >> 4) << 1; unpacked_deltas[1] = (packed_deltas & 0xf) << 1; m = 2; } else { i += 1; unpacked_deltas[0] = PRIME_DELTAS[i]; m = 1; } for (k = 0; k < m; k++) { prime += unpacked_deltas[k]; print_primes(prime); rem = bn_mod_word16(p, prime); /* Skip marking odd offsets (i.e. even candidates). */ for (j = (rem == 0) ? 0 : prime - rem; j < bn_bits(&composites) << 1; j += prime) { if ((j & 1) == 0) bn_set_bit(&composites, j >> 1); } } } /* composites now marked, apply Miller-Rabin to prime candidates. */ j = 0; for (i = 0; i < bn_bits(&composites); i++) { uint32_t diff_buf; struct LITE_BIGNUM diff; if (bn_is_bit_set(&composites, i)) continue; /* Recover increment from the composites sieve. */ diff_buf = (i << 1) - j; j = (i << 1); DCRYPTO_bn_wrap(&diff, &diff_buf, sizeof(diff_buf)); bn_add(p, &diff); /* Make sure prime will work with F4 public exponent. */ if (bn_mod_f4(p) >= 2) { if (bn_probable_prime(p)) return 1; } } always_memset(composites_buf, 0, sizeof(composites_buf)); return 0; }