/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Placeholder values for temporary battery pack. */ #include "battery.h" #include "battery_smart.h" #include "bd9995x.h" #include "charge_ramp.h" #include "charge_state.h" #include "console.h" #include "ec_commands.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_CHARGER, format, ## args) /* Shutdown mode parameter to write to manufacturer access register */ #define SB_SHUTDOWN_DATA 0x0010 /* Vendor CTO command parameter */ #define SB_VENDOR_PARAM_CTO_DISABLE 0 /* Flash address of Enabled Protections C Regsiter */ #define SB_VENDOR_ENABLED_PROTECT_C 0x482C /* Expected CTO disable value */ #define EXPECTED_CTO_DISABLE_VALUE 0x05 /* Vendor OTD Recovery Temperature command parameter */ #define SB_VENDOR_PARAM_OTD_RECOVERY_TEMP 1 /* Flash address of OTD Recovery Temperature Register */ #define SB_VENDOR_OTD_RECOVERY_TEMP 0x486F /* Expected OTD recovery temperature in 0.1C */ #define EXPECTED_OTD_RECOVERY_TEMP 400 enum battery_type { BATTERY_LG, BATTERY_LISHEN, BATTERY_SIMPLO, BATTERY_TYPE_COUNT, }; struct board_batt_params { const char *manuf_name; const struct battery_info *batt_info; }; /* * Set LISHEN as default since the LG precharge current level could cause the * LISHEN battery to not accept charge when it's recovering from a fully * discharged state. */ #define DEFAULT_BATTERY_TYPE BATTERY_LISHEN static enum battery_present batt_pres_prev = BP_NOT_SURE; static enum battery_type board_battery_type = BATTERY_TYPE_COUNT; /* Battery may delay reporting battery present */ static int battery_report_present = 1; /* * Battery protect_c register value. * Because this value can only be read when the battery is unsealed, the read of * this register is only done if the value is changed. */ static int protect_c_reg = -1; /* * Battery OTD recovery temperature register value. * Because this value can only be read when the battery is unsealed, the read of * this register is only done if the value is changed. */ static int otd_recovery_temp_reg = -1; /* * Battery info for LG A50. Note that the fields start_charging_min/max and * charging_min/max are not used for the Eve charger. The effective temperature * limits are given by discharging_min/max_c. */ static const struct battery_info batt_info_lg = { .voltage_max = TARGET_WITH_MARGIN(8800, 5), /* mV */ .voltage_normal = 7700, .voltage_min = 6100, /* Add 100mV for charger accuracy */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 46, .charging_min_c = 10, .charging_max_c = 50, .discharging_min_c = 0, .discharging_max_c = 60, }; /* * Battery info for LISHEN. Note that the fields start_charging_min/max and * charging_min/max are not used for the Eve charger. The effective temperature * limits are given by discharging_min/max_c. */ static const struct battery_info batt_info_lishen = { .voltage_max = TARGET_WITH_MARGIN(8800, 5), /* mV */ .voltage_normal = 7700, .voltage_min = 6100, /* Add 100mV for charger accuracy */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 46, .charging_min_c = 10, .charging_max_c = 50, .discharging_min_c = 0, .discharging_max_c = 60, }; static const struct board_batt_params info[] = { [BATTERY_LG] = { .manuf_name = "LG A50", .batt_info = &batt_info_lg, }, [BATTERY_LISHEN] = { .manuf_name = "Lishen A50", .batt_info = &batt_info_lishen, }, [BATTERY_SIMPLO] = { .manuf_name = "Simplo A50", .batt_info = &batt_info_lishen, }, }; BUILD_ASSERT(ARRAY_SIZE(info) == BATTERY_TYPE_COUNT); /* Get type of the battery connected on the board */ static int board_get_battery_type(void) { char name[3]; int i; if (!battery_manufacturer_name(name, sizeof(name))) { for (i = 0; i < BATTERY_TYPE_COUNT; i++) { if (!strncasecmp(name, info[i].manuf_name, ARRAY_SIZE(name)-1)) { board_battery_type = i; break; } } } return board_battery_type; } /* * Initialize the battery type for the board. * * Very first battery info is called by the charger driver to initialize * the charger parameters hence initialize the battery type for the board * as soon as the I2C is initialized. */ static void board_init_battery_type(void) { if (board_get_battery_type() != BATTERY_TYPE_COUNT) CPRINTS("found batt: %s", info[board_battery_type].manuf_name); else CPRINTS("battery not found"); } DECLARE_HOOK(HOOK_INIT, board_init_battery_type, HOOK_PRIO_INIT_I2C + 1); const struct battery_info *battery_get_info(void) { return info[board_battery_type == BATTERY_TYPE_COUNT ? DEFAULT_BATTERY_TYPE : board_battery_type].batt_info; } int board_cut_off_battery(void) { int rv; /* Ship mode command must be sent twice to take effect */ rv = sb_write(SB_MANUFACTURER_ACCESS, SB_SHUTDOWN_DATA); if (rv != EC_SUCCESS) return EC_RES_ERROR; rv = sb_write(SB_MANUFACTURER_ACCESS, SB_SHUTDOWN_DATA); return rv ? EC_RES_ERROR : EC_RES_SUCCESS; } static int charger_should_discharge_on_ac(struct charge_state_data *curr) { /* Can not discharge on AC without battery */ if (curr->batt.is_present != BP_YES) return 0; /* Do not discharge on AC if the battery is still waking up */ if (!(curr->batt.flags & BATT_FLAG_WANT_CHARGE) && !(curr->batt.status & STATUS_FULLY_CHARGED)) return 0; /* * In light load (<450mA being withdrawn from VSYS) the DCDC of the * charger operates intermittently i.e. DCDC switches continuously * and then stops to regulate the output voltage and current, and * sometimes to prevent reverse current from flowing to the input. * This causes a slight voltage ripple on VSYS that falls in the * audible noise frequency (single digit kHz range). This small * ripple generates audible noise in the output ceramic capacitors * (caps on VSYS and any input of DCDC under VSYS). * * To overcome this issue enable the battery learning operation * and suspend USB charging and DC/DC converter. */ if (!battery_is_cut_off() && !(curr->batt.flags & BATT_FLAG_WANT_CHARGE) && (curr->batt.status & STATUS_FULLY_CHARGED)) return 1; /* * To avoid inrush current from the external charger, enable * discharge on AC 2till the new charger is detected and charge * detect delay has passed. */ if (!chg_ramp_is_detected() && curr->batt.state_of_charge > 2) return 1; return 0; } int charger_profile_override(struct charge_state_data *curr) { const struct battery_info *batt_info; /* battery temp in 0.1 deg C */ int bat_temp_c = curr->batt.temperature - 2731; int disch_on_ac = charger_should_discharge_on_ac(curr); charger_discharge_on_ac(disch_on_ac); if (disch_on_ac) { curr->state = ST_DISCHARGE; return 0; } batt_info = battery_get_info(); /* Don't charge if outside of allowable temperature range */ if (bat_temp_c >= batt_info->charging_max_c * 10 || bat_temp_c < batt_info->charging_min_c * 10) { curr->requested_current = 0; curr->requested_voltage = 0; curr->batt.flags &= ~BATT_FLAG_WANT_CHARGE; curr->state = ST_IDLE; } return 0; } /* Customs options controllable by host command. */ #define PARAM_FASTCHARGE (CS_PARAM_CUSTOM_PROFILE_MIN + 0) enum ec_status charger_profile_override_get_param(uint32_t param, uint32_t *value) { return EC_RES_INVALID_PARAM; } enum ec_status charger_profile_override_set_param(uint32_t param, uint32_t value) { return EC_RES_INVALID_PARAM; } enum battery_present battery_hw_present(void) { /* The GPIO is low when the battery is physically present */ return gpio_get_level(GPIO_BATTERY_PRESENT_L) ? BP_NO : BP_YES; } static int battery_init(void) { int batt_status; return battery_status(&batt_status) ? 0 : !!(batt_status & STATUS_INITIALIZED); } /* Allow booting now that the battery has woke up */ static void battery_now_present(void) { CPRINTS("battery will now report present"); battery_report_present = 1; } DECLARE_DEFERRED(battery_now_present); /* * Check for case where XDSG bit is set indicating that even * though the FG can be read from the battery, the battery is not able to be * charged or discharged. This situation will happen if a battery disconnect was * intiaited via H1 setting the DISCONN signal to the battery. This will put the * battery pack into a sleep state and when power is reconnected, the FG can be * read, but the battery is still not able to provide power to the system. The * calling function returns batt_pres = BP_NO, which instructs the charging * state machine to prevent powering up the AP on battery alone which could lead * to a brownout event when the battery isn't able yet to provide power to the * system. . */ static int battery_check_disconnect(void) { int rv; uint8_t data[6]; /* Check if battery discharging is disabled. */ rv = sb_read_mfgacc(PARAM_OPERATION_STATUS, SB_ALT_MANUFACTURER_ACCESS, data, sizeof(data)); if (rv) return BATTERY_DISCONNECT_ERROR; if (data[3] & BATTERY_DISCHARGING_DISABLED) return BATTERY_DISCONNECTED; return BATTERY_NOT_DISCONNECTED; } /* * Physical detection of battery. */ enum battery_present battery_is_present(void) { enum battery_present batt_pres; static int battery_report_present_timer_started; /* Get the physical hardware status */ batt_pres = battery_hw_present(); /* * Make sure battery status is implemented, I2C transactions are * success & the battery status is Initialized to find out if it * is a working battery and it is not in the cut-off mode. * * If battery I2C fails but VBATT is high, battery is booting from * cut-off mode. * * FETs are turned off after Power Shutdown time. * The device will wake up when a voltage is applied to PACK. * Battery status will be inactive until it is initialized. */ if (batt_pres == BP_YES && batt_pres_prev != batt_pres && (battery_is_cut_off() != BATTERY_CUTOFF_STATE_NORMAL || battery_check_disconnect() != BATTERY_NOT_DISCONNECTED || battery_init() == 0)) { battery_report_present = 0; } else if (batt_pres == BP_YES && batt_pres_prev == BP_NO && !battery_report_present_timer_started) { /* * Wait 1 second before reporting present if it was * previously reported as not present */ battery_report_present_timer_started = 1; battery_report_present = 0; hook_call_deferred(&battery_now_present_data, SECOND); } if (!battery_report_present) batt_pres = BP_NO; batt_pres_prev = batt_pres; return batt_pres; } int board_battery_initialized(void) { return battery_hw_present() == batt_pres_prev; } static int board_battery_sb_write(uint8_t access, int cmd) { int rv; uint8_t buf[1 + sizeof(uint16_t)]; /* * Note, the i2c_lock must be handled by the calling function. The * battery unseal operation requires two writes without any other access * taking place. Therefore the calling function handles when to * grab/release the lock. */ buf[0] = access; buf[1] = cmd & 0xff; buf[2] = (cmd >> 8) & 0xff; rv = i2c_xfer(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS, buf, 1 + sizeof(uint16_t), NULL, 0); return rv; } int board_battery_read_mfgacc(int offset, int access, uint8_t *buf, int len) { int rv; uint8_t block_len, reg; /* start read */ i2c_lock(I2C_PORT_BATTERY, 1); /* Send write block */ rv = board_battery_sb_write(SB_MANUFACTURER_ACCESS, offset); if (rv) { i2c_lock(I2C_PORT_BATTERY, 0); return rv; } reg = access; rv = i2c_xfer_unlocked(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS, ®, 1, &block_len, 1, I2C_XFER_START); if (rv) { i2c_lock(I2C_PORT_BATTERY, 0); return rv; } /* Compare block length to desired read length */ if (len && (block_len > len)) block_len = len; rv = i2c_xfer_unlocked(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS, NULL, 0, buf, block_len, I2C_XFER_STOP); i2c_lock(I2C_PORT_BATTERY, 0); return rv; } static int board_battery_unseal(uint32_t param) { int rv; uint8_t data[6]; /* Get Operation Status */ rv = board_battery_read_mfgacc(PARAM_OPERATION_STATUS, SB_ALT_MANUFACTURER_ACCESS, data, sizeof(data)); if (rv) return EC_ERROR_UNKNOWN; if ((data[3] & 0x3) == 0x3) { /* * Hold the lock for both writes to ensure that no other * manufactuer access opertion can take place. */ i2c_lock(I2C_PORT_BATTERY, 1); rv = board_battery_sb_write(SB_MANUFACTURER_ACCESS, param & 0xffff); if (rv) goto unseal_fail; rv = board_battery_sb_write(SB_MANUFACTURER_ACCESS, (param >> 16) & 0xffff); if (rv) goto unseal_fail; i2c_lock(I2C_PORT_BATTERY, 0); /* Verify that battery is unsealed */ rv = board_battery_read_mfgacc(PARAM_OPERATION_STATUS, SB_ALT_MANUFACTURER_ACCESS, data, sizeof(data)); if (rv || ((data[3] & 0x3) != 0x2)) return EC_ERROR_UNKNOWN; } return EC_SUCCESS; unseal_fail: i2c_lock(I2C_PORT_BATTERY, 0); return EC_RES_ERROR; } static int board_battery_seal(void) { int rv; i2c_lock(I2C_PORT_BATTERY, 1); rv = board_battery_sb_write(SB_MANUFACTURER_ACCESS, 0x0030); i2c_lock(I2C_PORT_BATTERY, 0); if (rv != EC_SUCCESS) return EC_RES_ERROR; return EC_SUCCESS; } static int board_battery_write_flash(int addr, uint32_t data, int len) { int rv; uint8_t buf[sizeof(uint32_t) + 4]; if (len > 4) return EC_ERROR_INVAL; buf[0] = SB_ALT_MANUFACTURER_ACCESS; /* Number of bytes to write, including the address */ buf[1] = len + 2; /* Put in the flash address */ buf[2] = addr & 0xff; buf[3] = (addr >> 8) & 0xff; /* Add data to be written */ buf[4] = data & 0xff; buf[5] = (data >> 8) & 0xff; buf[6] = (data >> 16) & 0xff; buf[7] = (data >> 24) & 0xff; /* Account for command, length, and address */ len += 4; i2c_lock(I2C_PORT_BATTERY, 1); rv = i2c_xfer(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS, buf, len, NULL, 0); i2c_lock(I2C_PORT_BATTERY, 0); return rv; } static int board_battery_read_flash(int block, int len, uint8_t *buf) { uint8_t data[6]; int rv; int i; if (len > 4) len = 4; rv = board_battery_read_mfgacc(block, SB_ALT_MANUFACTURER_ACCESS, data, len + 2); if (rv) return EC_RES_ERROR; for (i = 0; i < len; i++) buf[i] = data[i+2]; return EC_SUCCESS; } static int board_battery_disable_cto(uint32_t value) { uint8_t protect_c; if (board_battery_unseal(value)) return EC_RES_ERROR; /* Check CTO enable */ if (board_battery_read_flash(SB_VENDOR_ENABLED_PROTECT_C, 1, &protect_c)) { board_battery_seal(); return EC_RES_ERROR; } if (protect_c != EXPECTED_CTO_DISABLE_VALUE) { board_battery_write_flash(SB_VENDOR_ENABLED_PROTECT_C, EXPECTED_CTO_DISABLE_VALUE, 1); /* After flash write, allow time for it to complete */ msleep(100); /* Read the current protect_c register value */ if (board_battery_read_flash(SB_VENDOR_ENABLED_PROTECT_C, 1, &protect_c) == EC_SUCCESS) protect_c_reg = protect_c; } else { protect_c_reg = protect_c; } if (board_battery_seal()) { /* If failed, then wait one more time and seal again */ msleep(100); if (board_battery_seal()) return EC_RES_ERROR; } return EC_SUCCESS; } static int board_battery_fix_otd_recovery_temp(uint32_t value) { int16_t otd_recovery_temp; if (board_battery_unseal(value)) return EC_RES_ERROR; /* Check current OTD recovery temp */ if (board_battery_read_flash(SB_VENDOR_OTD_RECOVERY_TEMP, 2, (uint8_t *)&otd_recovery_temp)) { board_battery_seal(); return EC_RES_ERROR; } if (otd_recovery_temp != EXPECTED_OTD_RECOVERY_TEMP) { board_battery_write_flash(SB_VENDOR_OTD_RECOVERY_TEMP, EXPECTED_OTD_RECOVERY_TEMP, 2); /* After flash write, allow time for it to complete */ msleep(100); /* Read the current OTD recovery temperature */ if (!board_battery_read_flash(SB_VENDOR_OTD_RECOVERY_TEMP, 2, (uint8_t *)&otd_recovery_temp)) otd_recovery_temp_reg = otd_recovery_temp; } else { otd_recovery_temp_reg = otd_recovery_temp; } if (board_battery_seal()) { /* If failed, then wait one more time and seal again */ msleep(100); if (board_battery_seal()) return EC_RES_ERROR; } return EC_SUCCESS; } int battery_get_vendor_param(uint32_t param, uint32_t *value) { /* * These registers can't be read directly because the flash area * of the battery is protected, unless it's been * unsealed. The key is only able to be passed in the set * function. The get function is always called following the set * function. Therefore when the set function is called, this * register value is read and saved to protect_c_reg. If this * value is < 0, then the set function wasn't called and * therefore the value can't be known. */ switch (param) { case SB_VENDOR_PARAM_CTO_DISABLE: if (protect_c_reg >= 0) { *value = protect_c_reg; return EC_SUCCESS; } break; case SB_VENDOR_PARAM_OTD_RECOVERY_TEMP: if (otd_recovery_temp_reg >= 0) { *value = otd_recovery_temp_reg; return EC_SUCCESS; } break; default: return EC_ERROR_UNIMPLEMENTED; } return EC_RES_ERROR; } int battery_set_vendor_param(uint32_t param, uint32_t value) { switch (param) { case SB_VENDOR_PARAM_CTO_DISABLE: if (board_battery_disable_cto(value)) return EC_ERROR_UNKNOWN; break; case SB_VENDOR_PARAM_OTD_RECOVERY_TEMP: if (board_battery_fix_otd_recovery_temp(value)) return EC_ERROR_UNKNOWN; break; default: return EC_ERROR_INVAL; } return EC_SUCCESS; }