/* Copyright 2021 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "common.h" #include "accelgyro.h" #include "adc_chip.h" #include "driver/accel_bma2x2.h" #include "driver/accel_bma2x2_public.h" #include "driver/accel_bma422.h" #include "driver/accelgyro_bmi_common.h" #include "driver/accelgyro_lsm6dsm.h" #include "hooks.h" #include "keyboard_scan.h" #include "motion_sense.h" #include "temp_sensor.h" #include "thermal.h" #include "temp_sensor/thermistor.h" /* ADC configuration */ const struct adc_t adc_channels[] = { [ADC_TEMP_SENSOR_1_DDR_SOC] = { .name = "TEMP_DDR_SOC", .input_ch = NPCX_ADC_CH0, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_TEMP_SENSOR_2_FAN] = { .name = "TEMP_FAN", .input_ch = NPCX_ADC_CH1, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_TEMP_SENSOR_3_CHARGER] = { .name = "TEMP_CHARGER", .input_ch = NPCX_ADC_CH6, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); K_MUTEX_DEFINE(g_lid_accel_mutex); K_MUTEX_DEFINE(g_base_accel_mutex); /* BMA253 private data */ static struct accelgyro_saved_data_t g_bma253_data; /* BMI160 private data */ static struct bmi_drv_data_t g_bmi160_data; /* LSM6DSM private data */ static struct lsm6dsm_data lsm6dsm_data = LSM6DSM_DATA; /* BMA422 private data */ static struct accelgyro_saved_data_t g_bma422_data; /* TODO(b/192477578): calibrate the orientation matrix on later board stage */ static const mat33_fp_t lid_standard_ref = { { 0, FLOAT_TO_FP(1), 0}, { FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(-1)} }; static const mat33_fp_t lid_standard_ref_id_1 = { { 0, FLOAT_TO_FP(1), 0}, { FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(-1)} }; /* TODO(b/192477578): calibrate the orientation matrix on later board stage */ static const mat33_fp_t base_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; static const mat33_fp_t base_standard_ref_id_1 = { { 0, FLOAT_TO_FP(1), 0}, { FLOAT_TO_FP(-1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)} }; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA255, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma2x2_accel_drv, .mutex = &g_lid_accel_mutex, .drv_data = &g_bma253_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMA2x2_I2C_ADDR2_FLAGS, .rot_standard_ref = &lid_standard_ref, .min_frequency = BMA255_ACCEL_MIN_FREQ, .max_frequency = BMA255_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support tablet mode */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_accel_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .default_range = 4, /* g */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_accel_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); struct motion_sensor_t bma422_lid_accel = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA422, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma4_accel_drv, .mutex = &g_lid_accel_mutex, .drv_data = &g_bma422_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMA4_I2C_ADDR_SECONDARY, .rot_standard_ref = &lid_standard_ref_id_1, .min_frequency = BMA4_ACCEL_MIN_FREQ, .max_frequency = BMA4_ACCEL_MAX_FREQ, .default_range = 2, /* g, enough for laptop. */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 12500 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 12500 | ROUND_UP_FLAG, .ec_rate = 0, }, }, }; struct motion_sensor_t lsm6dsm_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DSM, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_accel_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_ACCEL), .int_signal = GPIO_EC_IMU_INT_R_L, .flags = MOTIONSENSE_FLAG_INT_SIGNAL, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref_id_1, .default_range = 4, /* g */ .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }; struct motion_sensor_t lsm6dsm_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DSM, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_accel_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_GYRO), .int_signal = GPIO_EC_IMU_INT_R_L, .flags = MOTIONSENSE_FLAG_INT_SIGNAL, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .default_range = 1000 | ROUND_UP_FLAG, /* dps */ .rot_standard_ref = &base_standard_ref_id_1, .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }; void motion_interrupt(enum gpio_signal signal) { if (get_board_id() >= 1) lsm6dsm_interrupt(signal); else bmi160_interrupt(signal); } static void update_sensor_array(void) { if (get_board_id() >= 1) { motion_sensors[LID_ACCEL] = bma422_lid_accel; motion_sensors[BASE_ACCEL] = lsm6dsm_base_accel; motion_sensors[BASE_GYRO] = lsm6dsm_base_gyro; ccprints("LID ACCEL is BMA422"); ccprints("BASE IMU is LSM6DSM"); } else { ccprints("LID ACCEL is BMA253"); ccprints("BASE IMU is BMI160"); } } DECLARE_HOOK(HOOK_INIT, update_sensor_array, HOOK_PRIO_INIT_I2C); static void baseboard_sensors_init(void) { /* Enable gpio interrupt for base accelgyro sensor */ gpio_enable_interrupt(GPIO_EC_IMU_INT_R_L); } DECLARE_HOOK(HOOK_INIT, baseboard_sensors_init, HOOK_PRIO_INIT_I2C + 1); /* Temperature sensor configuration */ const struct temp_sensor_t temp_sensors[] = { [TEMP_SENSOR_1_DDR_SOC] = { .name = "DDR and SOC", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_30k9_47k_4050b, .idx = ADC_TEMP_SENSOR_1_DDR_SOC }, [TEMP_SENSOR_2_FAN] = { .name = "Fan", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_30k9_47k_4050b, .idx = ADC_TEMP_SENSOR_2_FAN }, [TEMP_SENSOR_3_CHARGER] = { .name = "Charger", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_30k9_47k_4050b, .idx = ADC_TEMP_SENSOR_3_CHARGER }, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * TODO(b/194318801): confirm thermal limits setting for gimble * * Tiger Lake specifies 100 C as maximum TDP temperature. THRMTRIP# occurs at * 130 C. However, sensor is located next to DDR, so we need to use the lower * DDR temperature limit (85 C) */ static const struct ec_thermal_config thermal_cpu = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(70), [EC_TEMP_THRESH_HALT] = C_TO_K(80), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(65), }, .temp_fan_off = C_TO_K(35), .temp_fan_max = C_TO_K(50), }; /* * TODO(b/194318801): confirm thermal limits setting for gimble * * Inductor limits - used for both charger and PP3300 regulator * * Need to use the lower of the charger IC, PP3300 regulator, and the inductors * * Charger max recommended temperature 100C, max absolute temperature 125C * PP3300 regulator: operating range -40 C to 145 C * * Inductors: limit of 125c * PCB: limit is 80c */ static const struct ec_thermal_config thermal_inductor = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(75), [EC_TEMP_THRESH_HALT] = C_TO_K(80), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(65), }, .temp_fan_off = C_TO_K(40), .temp_fan_max = C_TO_K(55), }; /* this should really be "const" */ struct ec_thermal_config thermal_params[] = { [TEMP_SENSOR_1_DDR_SOC] = thermal_cpu, /* TODO(b/194318801): confirm thermal limits setting for gimble */ [TEMP_SENSOR_2_FAN] = thermal_inductor, [TEMP_SENSOR_3_CHARGER] = thermal_inductor, }; BUILD_ASSERT(ARRAY_SIZE(thermal_params) == TEMP_SENSOR_COUNT);