/* Copyright 2020 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* metaknight board-specific configuration */ #include "adc.h" #include "button.h" #include "cbi_fw_config.h" #include "cbi_ssfc.h" #include "charge_manager.h" #include "charge_state.h" #include "charger.h" #include "chipset.h" #include "common.h" #include "compile_time_macros.h" #include "driver/accel_bma2x2.h" #include "driver/accel_kionix.h" #include "driver/accelgyro_bmi_common.h" #include "driver/accelgyro_icm426xx.h" #include "driver/accelgyro_icm_common.h" #include "driver/accelgyro_lsm6dsm.h" #include "driver/bc12/pi3usb9201.h" #include "driver/charger/isl923x.h" #include "driver/retimer/nb7v904m.h" #include "driver/tcpm/raa489000.h" #include "driver/tcpm/tcpci.h" #include "driver/temp_sensor/thermistor.h" #include "driver/usb_mux/pi3usb3x532.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "motion_sense.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "stdbool.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ##args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ##args) #define INT_RECHECK_US 5000 #define ADC_VOL_UP_MASK BIT(0) #define ADC_VOL_DOWN_MASK BIT(1) static uint8_t new_adc_key_state; /* USB-A Configuration */ const int usb_port_enable[USB_PORT_COUNT] = { GPIO_EN_USB_A0_VBUS, GPIO_EN_USB_A1_VBUS, }; /* C0 interrupt line shared by BC 1.2 and charger */ static void check_c0_line(void); DECLARE_DEFERRED(check_c0_line); static void notify_c0_chips(void) { /* * The interrupt line is shared between the TCPC and BC 1.2 detection * chip. Therefore we'll need to check both ICs. */ schedule_deferred_pd_interrupt(0); usb_charger_task_set_event(0, USB_CHG_EVENT_BC12); } static void check_c0_line(void) { /* * If line is still being held low, see if there's more to process from * one of the chips */ if (!gpio_get_level(GPIO_USB_C0_INT_ODL)) { notify_c0_chips(); hook_call_deferred(&check_c0_line_data, INT_RECHECK_US); } } static void usb_c0_interrupt(enum gpio_signal s) { /* Cancel any previous calls to check the interrupt line */ hook_call_deferred(&check_c0_line_data, -1); /* Notify all chips using this line that an interrupt came in */ notify_c0_chips(); /* Check the line again in 5ms */ hook_call_deferred(&check_c0_line_data, INT_RECHECK_US); } static void sub_hdmi_hpd_interrupt(enum gpio_signal s) { int hdmi_hpd_odl = gpio_get_level(GPIO_HDMI_HPD_SUB_ODL); gpio_set_level(GPIO_EC_AP_USB_C1_HDMI_HPD, !hdmi_hpd_odl); cprints(CC_SYSTEM, "HDMI plug-%s", !hdmi_hpd_odl ? "in" : "out"); } /** * Handle debounced pen input changing state. */ static void pen_input_deferred(void) { int pen_charge_enable = !gpio_get_level(GPIO_PEN_DET_ODL) && !chipset_in_state(CHIPSET_STATE_ANY_OFF); if (pen_charge_enable) gpio_set_level(GPIO_EN_PP3300_PEN, 1); else gpio_set_level(GPIO_EN_PP3300_PEN, 0); CPRINTS("Pen charge %sable", pen_charge_enable ? "en" : "dis"); } DECLARE_DEFERRED(pen_input_deferred); void pen_input_interrupt(enum gpio_signal signal) { /* pen input debounce time */ hook_call_deferred(&pen_input_deferred_data, (100 * MSEC)); } static void pen_charge_check(void) { hook_call_deferred(&pen_input_deferred_data, (100 * MSEC)); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, pen_charge_check, HOOK_PRIO_LAST); DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, pen_charge_check, HOOK_PRIO_LAST); /* Must come after other header files and interrupt handler declarations */ #include "gpio_list.h" /* ADC channels */ const struct adc_t adc_channels[] = { [ADC_TEMP_SENSOR_1] = { .name = "TEMP_SENSOR1", .input_ch = NPCX_ADC_CH0, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_TEMP_SENSOR_2] = { .name = "TEMP_SENSOR2", .input_ch = NPCX_ADC_CH1, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_SUB_ANALOG] = { .name = "SUB_ANALOG", .input_ch = NPCX_ADC_CH2, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_VSNS_PP3300_A] = { .name = "PP3300_A_PGOOD", .input_ch = NPCX_ADC_CH9, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* Thermistors */ const struct temp_sensor_t temp_sensors[] = { [TEMP_SENSOR_MEMORY] = { .name = "Memory", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_1 }, [TEMP_SENSOR_CPU] = { .name = "CPU", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_2 }, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * TODO(b/202062363): Remove when clang is fixed. */ #define THERMAL_MEMORY \ { \ .temp_host = { \ [EC_TEMP_THRESH_WARN] = 0, \ [EC_TEMP_THRESH_HIGH] = C_TO_K(70), \ [EC_TEMP_THRESH_HALT] = C_TO_K(85), \ }, \ .temp_host_release = { \ [EC_TEMP_THRESH_WARN] = 0, \ [EC_TEMP_THRESH_HIGH] = C_TO_K(65), \ [EC_TEMP_THRESH_HALT] = 0, \ }, \ } __maybe_unused static const struct ec_thermal_config thermal_memory = THERMAL_MEMORY; /* * TODO(b/202062363): Remove when clang is fixed. */ #define THERMAL_CPU \ { \ .temp_host = { \ [EC_TEMP_THRESH_WARN] = 0, \ [EC_TEMP_THRESH_HIGH] = C_TO_K(75), \ [EC_TEMP_THRESH_HALT] = C_TO_K(80), \ }, \ .temp_host_release = { \ [EC_TEMP_THRESH_WARN] = 0, \ [EC_TEMP_THRESH_HIGH] = C_TO_K(65), \ [EC_TEMP_THRESH_HALT] = 0, \ }, \ } __maybe_unused static const struct ec_thermal_config thermal_cpu = THERMAL_CPU; struct ec_thermal_config thermal_params[TEMP_SENSOR_COUNT]; static void setup_thermal(void) { thermal_params[TEMP_SENSOR_MEMORY] = thermal_memory; thermal_params[TEMP_SENSOR_CPU] = thermal_cpu; } void board_hibernate(void) { /* * Both charger ICs need to be put into their "low power mode" before * entering the Z-state. */ if (board_get_charger_chip_count() > 1) raa489000_hibernate(1, true); raa489000_hibernate(0, true); } void board_reset_pd_mcu(void) { /* * TODO(b:147316511): Here we could issue a digital reset to the IC, * unsure if we actually want to do that or not yet. */ } #ifdef BOARD_WADDLEDOO static void reconfigure_5v_gpio(void) { /* * b/147257497: On early waddledoo boards, GPIO_EN_PP5000 was swapped * with GPIO_VOLUP_BTN_ODL. Therefore, we'll actually need to set that * GPIO instead for those boards. Note that this breaks the volume up * button functionality. */ if (system_get_board_version() < 0) { CPRINTS("old board - remapping 5V en"); gpio_set_flags(GPIO_VOLUP_BTN_ODL, GPIO_OUT_LOW); } } DECLARE_HOOK(HOOK_INIT, reconfigure_5v_gpio, HOOK_PRIO_INIT_I2C + 1); #endif /* BOARD_WADDLEDOO */ static void set_5v_gpio(int level) { int version; enum gpio_signal gpio = GPIO_EN_PP5000; /* * b/147257497: On early waddledoo boards, GPIO_EN_PP5000 was swapped * with GPIO_VOLUP_BTN_ODL. Therefore, we'll actually need to set that * GPIO instead for those boards. Note that this breaks the volume up * button functionality. */ if (IS_ENABLED(BOARD_WADDLEDOO)) { version = system_get_board_version(); /* * If the CBI EEPROM wasn't formatted, assume it's a very early * board. */ gpio = version < 0 ? GPIO_VOLUP_BTN_ODL : GPIO_EN_PP5000; } gpio_set_level(gpio, level); } __override void board_power_5v_enable(int enable) { /* * Port 0 simply has a GPIO to turn on the 5V regulator, however, 5V is * generated locally on the sub board and we need to set the comparator * polarity on the sub board charger IC, or send enable signal to HDMI * DB. */ set_5v_gpio(!!enable); if (get_cbi_fw_config_db() == DB_1A_HDMI || get_cbi_fw_config_db() == DB_LTE_HDMI) { gpio_set_level(GPIO_SUB_C1_INT_EN_RAILS_ODL, !enable); } } __override uint8_t board_get_usb_pd_port_count(void) { return CONFIG_USB_PD_PORT_MAX_COUNT; } __override uint8_t board_get_charger_chip_count(void) { return CHARGER_NUM; } int board_is_sourcing_vbus(int port) { int regval; tcpc_read(port, TCPC_REG_POWER_STATUS, ®val); return !!(regval & TCPC_REG_POWER_STATUS_SOURCING_VBUS); } int board_set_active_charge_port(int port) { int is_real_port = (port >= 0 && port < board_get_usb_pd_port_count()); int i; int old_port; if (!is_real_port && port != CHARGE_PORT_NONE) return EC_ERROR_INVAL; old_port = charge_manager_get_active_charge_port(); CPRINTS("New chg p%d", port); /* Disable all ports. */ if (port == CHARGE_PORT_NONE) { for (i = 0; i < board_get_usb_pd_port_count(); i++) { tcpc_write(i, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_LOW); raa489000_enable_asgate(i, false); } return EC_SUCCESS; } /* Check if port is sourcing VBUS. */ if (board_is_sourcing_vbus(port)) { CPRINTS("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports' sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < board_get_usb_pd_port_count(); i++) { if (i == port) continue; if (tcpc_write(i, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_LOW)) CPRINTS("p%d: sink path disable failed.", i); raa489000_enable_asgate(i, false); } /* * Stop the charger IC from switching while changing ports. Otherwise, * we can overcurrent the adapter we're switching to. (crbug.com/926056) */ if (old_port != CHARGE_PORT_NONE) charger_discharge_on_ac(1); /* Enable requested charge port. */ if (raa489000_enable_asgate(port, true) || tcpc_write(port, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_HIGH)) { CPRINTS("p%d: sink path enable failed.", port); charger_discharge_on_ac(0); return EC_ERROR_UNKNOWN; } /* Allow the charger IC to begin/continue switching. */ charger_discharge_on_ac(0); return EC_SUCCESS; } __override void typec_set_source_current_limit(int port, enum tcpc_rp_value rp) { if (port < 0 || port > board_get_usb_pd_port_count()) return; raa489000_set_output_current(port, rp); } /* Sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* Matrices to rotate accelerometers into the standard reference. */ static const mat33_fp_t lid_standard_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(-1), 0 }, { 0, 0, FLOAT_TO_FP(1) } }; static const mat33_fp_t base_standard_ref = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(1), 0, 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; static const mat33_fp_t base_lsm6dsm_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; static const mat33_fp_t base_icm_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; static struct accelgyro_saved_data_t g_bma253_data; static struct bmi_drv_data_t g_bmi160_data; static struct kionix_accel_data g_kx022_data; static struct lsm6dsm_data lsm6dsm_data = LSM6DSM_DATA; static struct icm_drv_data_t g_icm426xx_data; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA255, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma2x2_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_bma253_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMA2x2_I2C_ADDR1_FLAGS, .rot_standard_ref = &lid_standard_ref, .default_range = 2, .min_frequency = BMA255_ACCEL_MIN_FREQ, .max_frequency = BMA255_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .default_range = 4, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); struct motion_sensor_t kx022_lid_accel = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = KX022_ADDR0_FLAGS, .rot_standard_ref = &lid_standard_ref, .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support tablet mode */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }; struct motion_sensor_t lsm6dsm_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DS3, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_ACCEL), .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .rot_standard_ref = &base_lsm6dsm_ref, .default_range = 4, /* g */ .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }; struct motion_sensor_t lsm6dsm_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DS3, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_GYRO), .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .default_range = 1000 | ROUND_UP_FLAG, /* dps */ .rot_standard_ref = &base_lsm6dsm_ref, .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, }; struct motion_sensor_t icm426xx_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM426XX, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &icm426xx_drv, .mutex = &g_base_mutex, .drv_data = &g_icm426xx_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = ICM426XX_ADDR0_FLAGS, .default_range = 4, /* g, enough for laptop */ .rot_standard_ref = &base_icm_ref, .min_frequency = ICM426XX_ACCEL_MIN_FREQ, .max_frequency = ICM426XX_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }; struct motion_sensor_t icm426xx_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM426XX, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &icm426xx_drv, .mutex = &g_base_mutex, .drv_data = &g_icm426xx_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = ICM426XX_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_icm_ref, .min_frequency = ICM426XX_GYRO_MIN_FREQ, .max_frequency = ICM426XX_GYRO_MAX_FREQ, }; static int base_gyro_config; void board_init(void) { int on; gpio_enable_interrupt(GPIO_USB_C0_INT_ODL); check_c0_line(); if (get_cbi_fw_config_db() == DB_1A_HDMI || get_cbi_fw_config_db() == DB_LTE_HDMI) { /* Disable i2c on HDMI pins */ gpio_config_pin(MODULE_I2C, GPIO_HDMI_HPD_SUB_ODL, 0); gpio_config_pin(MODULE_I2C, GPIO_GPIO92_NC, 0); gpio_set_flags(GPIO_SUB_C1_INT_EN_RAILS_ODL, GPIO_ODR_HIGH); /* Select HDMI option */ gpio_set_level(GPIO_HDMI_SEL_L, 0); /* Enable interrupt for passing through HPD */ gpio_enable_interrupt(GPIO_HDMI_HPD_SUB_ODL); } else { /* Set SDA as an input */ gpio_set_flags(GPIO_HDMI_HPD_SUB_ODL, GPIO_INPUT); } /* Enable gpio interrupt for base accelgyro sensor */ gpio_enable_interrupt(GPIO_BASE_SIXAXIS_INT_L); /* Enable gpio interrupt for pen detect */ gpio_enable_interrupt(GPIO_PEN_DET_ODL); /* Turn on 5V if the system is on, otherwise turn it off. */ on = chipset_in_state(CHIPSET_STATE_ON | CHIPSET_STATE_ANY_SUSPEND | CHIPSET_STATE_SOFT_OFF); board_power_5v_enable(on); /* Initialize g-sensor */ base_gyro_config = get_cbi_ssfc_base_sensor(); if (base_gyro_config == SSFC_SENSOR_LSM6DSM) { motion_sensors[BASE_ACCEL] = lsm6dsm_base_accel; motion_sensors[BASE_GYRO] = lsm6dsm_base_gyro; cprints(CC_SYSTEM, "SSFC: BASE GYRO is LSM6DSM"); } else if (get_cbi_ssfc_base_sensor() == SSFC_SENSOR_ICM426XX) { motion_sensors[BASE_ACCEL] = icm426xx_base_accel; motion_sensors[BASE_GYRO] = icm426xx_base_gyro; cprints(CC_SYSTEM, "SSFC: BASE GYRO is ICM426XX"); } else cprints(CC_SYSTEM, "SSFC: BASE GYRO is BMI160"); if (get_cbi_ssfc_lid_sensor() == SSFC_SENSOR_KX022) { motion_sensors[LID_ACCEL] = kx022_lid_accel; cprints(CC_SYSTEM, "SSFC: LID ACCEL is KX022"); } else cprints(CC_SYSTEM, "SSFC: LID ACCEL is BMA253"); /* Initial thermal */ setup_thermal(); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); int pd_snk_is_vbus_provided(int port) { return pd_check_vbus_level(port, VBUS_PRESENT); } const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; const struct pi3usb9201_config_t pi3usb9201_bc12_chips[] = { { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS, .flags = PI3USB9201_ALWAYS_POWERED, }, }; const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_USB_C0, .addr_flags = RAA489000_TCPC0_I2C_FLAGS, }, .flags = TCPC_FLAGS_TCPCI_REV2_0, .drv = &raa489000_tcpm_drv, .alert_signal = GPIO_USB_C0_INT_ODL, }, }; const struct usb_mux_chain usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .mux = &(const struct usb_mux){ .usb_port = 0, .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = PI3USB3X532_I2C_ADDR0, .driver = &pi3usb3x532_usb_mux_driver, }, }, }; uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; int regval; int p; /* * The interrupt line is shared between the TCPC and BC1.2 * detector IC. Therefore, go out and actually read the alert * registers to report the alert status. */ for (p = 0; p < board_get_usb_pd_port_count(); p++) { if (gpio_get_level(tcpc_config[p].alert_signal) || tcpc_read16(p, TCPC_REG_ALERT, ®val)) continue; /* The TCPCI Rev 1.0 spec says to ignore bits 14:12. */ if (!(tcpc_config[p].flags & TCPC_FLAGS_TCPCI_REV2_0)) regval &= ~(BIT(14) | BIT(13) | BIT(12)); if (regval) status |= (PD_STATUS_TCPC_ALERT_0 << p); } return status; } int adc_to_physical_value(enum gpio_signal gpio) { if (gpio == GPIO_VOLUME_UP_L) return !!(new_adc_key_state & ADC_VOL_UP_MASK); else if (gpio == GPIO_VOLUME_DOWN_L) return !!(new_adc_key_state & ADC_VOL_DOWN_MASK); CPRINTS("Not a volume up or down key"); return 0; } int button_is_adc_detected(enum gpio_signal gpio) { return (gpio == GPIO_VOLUME_DOWN_L) || (gpio == GPIO_VOLUME_UP_L); } static void adc_vol_key_press_check(void) { int volt = adc_read_channel(ADC_SUB_ANALOG); static uint8_t old_adc_key_state; uint8_t adc_key_state_change; if (volt > 2400 && volt < 2540) { /* volume-up is pressed */ new_adc_key_state = ADC_VOL_UP_MASK; } else if (volt > 2600 && volt < 2740) { /* volume-down is pressed */ new_adc_key_state = ADC_VOL_DOWN_MASK; } else if (volt < 2300) { /* both volumn-up and volume-down are pressed */ new_adc_key_state = ADC_VOL_UP_MASK | ADC_VOL_DOWN_MASK; } else if (volt > 2780) { /* both volumn-up and volume-down are released */ new_adc_key_state = 0; } if (new_adc_key_state != old_adc_key_state) { adc_key_state_change = old_adc_key_state ^ new_adc_key_state; if (adc_key_state_change & ADC_VOL_UP_MASK) button_interrupt(GPIO_VOLUME_UP_L); if (adc_key_state_change & ADC_VOL_DOWN_MASK) button_interrupt(GPIO_VOLUME_DOWN_L); old_adc_key_state = new_adc_key_state; } } DECLARE_HOOK(HOOK_TICK, adc_vol_key_press_check, HOOK_PRIO_DEFAULT); /* This callback disables keyboard when convertibles are fully open */ __override void lid_angle_peripheral_enable(int enable) { int chipset_in_s0 = chipset_in_state(CHIPSET_STATE_ON); /* * If the lid is in tablet position via other sensors, * ignore the lid angle, which might be faulty then * disable keyboard. */ if (tablet_get_mode()) enable = 0; if (enable) { keyboard_scan_enable(1, KB_SCAN_DISABLE_LID_ANGLE); } else { /* * Ensure that the chipset is off before disabling the keyboard. * When the chipset is on, the EC keeps the keyboard enabled and * the AP decides whether to ignore input devices or not. */ if (!chipset_in_s0) keyboard_scan_enable(0, KB_SCAN_DISABLE_LID_ANGLE); } } #ifndef TEST_BUILD void motion_interrupt(enum gpio_signal signal) { switch (base_gyro_config) { case SSFC_SENSOR_LSM6DSM: lsm6dsm_interrupt(signal); break; case SSFC_SENSOR_ICM426XX: icm426xx_interrupt(signal); break; case SSFC_SENSOR_BMI160: default: bmi160_interrupt(signal); break; } } const struct i2c_port_t i2c_ports[] = { { .name = "eeprom", .port = I2C_PORT_EEPROM, .kbps = 400, .scl = GPIO_EC_I2C_EEPROM_SCL, .sda = GPIO_EC_I2C_EEPROM_SDA }, { .name = "battery", .port = I2C_PORT_BATTERY, .kbps = 100, .scl = GPIO_EC_I2C_BATTERY_SCL, .sda = GPIO_EC_I2C_BATTERY_SDA }, { .name = "sensor", .port = I2C_PORT_SENSOR, .kbps = 400, .scl = GPIO_EC_I2C_SENSOR_SCL, .sda = GPIO_EC_I2C_SENSOR_SDA }, { .name = "usbc0", .port = I2C_PORT_USB_C0, .kbps = 1000, .scl = GPIO_EC_I2C_USB_C0_SCL, .sda = GPIO_EC_I2C_USB_C0_SDA }, #if CONFIG_USB_PD_PORT_MAX_COUNT > 1 { .name = "sub_usbc1", .port = I2C_PORT_SUB_USB_C1, .kbps = 1000, .scl = GPIO_EC_I2C_SUB_USB_C1_SCL, .sda = GPIO_EC_I2C_SUB_USB_C1_SDA }, #endif }; #endif