/* Copyright 2019 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Morphius board configuration */ #include "battery_smart.h" #include "button.h" #include "driver/accelgyro_bmi160.h" #include "driver/accel_kionix.h" #include "driver/accel_kx022.h" #include "driver/retimer/pi3dpx1207.h" #include "driver/usb_mux/amd_fp5.h" #include "extpower.h" #include "gpio.h" #include "fan.h" #include "fan_chip.h" #include "hooks.h" #include "keyboard_8042.h" #include "lid_switch.h" #include "power.h" #include "power_button.h" #include "ps2_chip.h" #include "pwm.h" #include "pwm_chip.h" #include "switch.h" #include "system.h" #include "task.h" #include "usb_mux.h" #include "usb_charge.h" #include "gpio_list.h" #ifdef HAS_TASK_MOTIONSENSE /* Motion sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* sensor private data */ static struct kionix_accel_data g_kx022_data; static struct bmi160_drv_data_t g_bmi160_data; /* TODO(gcc >= 5.0) Remove the casts to const pointer at rot_standard_ref */ struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = KX022_ADDR1_FLAGS, .rot_standard_ref = NULL, .default_range = 2, /* g, enough for laptop. */ .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 2, /* g, enough for laptop */ .rot_standard_ref = NULL, .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = NULL, .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, }; unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); #endif /* HAS_TASK_MOTIONSENSE */ static void trackpoint_reset_deferred(void) { gpio_set_level(GPIO_EC_PS2_RESET, 1); msleep(2); gpio_set_level(GPIO_EC_PS2_RESET, 0); msleep(10); ps2_enable_channel(NPCX_PS2_CH0, 1, send_aux_data_to_host); msleep(10); } DECLARE_DEFERRED(trackpoint_reset_deferred); void send_aux_data_to_device(uint8_t data) { ps2_transmit_byte(NPCX_PS2_CH0, data); } void ps2_pwr_en_interrupt(enum gpio_signal signal) { hook_call_deferred(&trackpoint_reset_deferred_data, MSEC); } const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { .channel = 3, .flags = PWM_CONFIG_DSLEEP, .freq = 100, }, [PWM_CH_FAN] = { .channel = 2, .flags = PWM_CONFIG_OPEN_DRAIN, .freq = 25000, }, [PWM_CH_POWER_LED] = { .channel = 0, .flags = PWM_CONFIG_DSLEEP, .freq = 100, }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* MFT channels. These are logically separate from pwm_channels. */ const struct mft_t mft_channels[] = { [MFT_CH_0] = { .module = NPCX_MFT_MODULE_1, .clk_src = TCKC_LFCLK, .pwm_id = PWM_CH_FAN, }, }; BUILD_ASSERT(ARRAY_SIZE(mft_channels) == MFT_CH_COUNT); /***************************************************************************** * USB-C MUX/Retimer dynamic configuration */ static void setup_mux(void) { if (ec_config_has_usbc1_retimer_ps8802()) { ccprints("C1 PS8802 detected"); /* * Main MUX is PS8802, secondary MUX is modified FP5 * * Replace usb_muxes[USBC_PORT_C1] with the PS8802 * table entry. */ memcpy(&usb_muxes[USBC_PORT_C1], &usbc1_ps8802, sizeof(struct usb_mux)); /* Set the AMD FP5 as the secondary MUX */ usb_muxes[USBC_PORT_C1].next_mux = &usbc1_amd_fp5_usb_mux; /* Don't have the AMD FP5 flip */ usbc1_amd_fp5_usb_mux.flags = USB_MUX_FLAG_SET_WITHOUT_FLIP; } else if (ec_config_has_usbc1_retimer_ps8818()) { ccprints("C1 PS8818 detected"); /* * Main MUX is FP5, secondary MUX is PS8818 * * Replace usb_muxes[USBC_PORT_C1] with the AMD FP5 * table entry. */ memcpy(&usb_muxes[USBC_PORT_C1], &usbc1_amd_fp5_usb_mux, sizeof(struct usb_mux)); /* Set the PS8818 as the secondary MUX */ usb_muxes[USBC_PORT_C1].next_mux = &usbc1_ps8818; } } /* TODO(b:151232257) Remove probe code when hardware supports CBI */ #include "driver/retimer/ps8802.h" #include "driver/retimer/ps8818.h" static void probe_setup_mux_backup(void) { if (usb_muxes[USBC_PORT_C1].driver != NULL) return; /* * Identifying a PS8818 is faster than the PS8802, * so do it first. */ if (ps8818_detect(&usbc1_ps8818) == EC_SUCCESS) { set_cbi_fw_config(0x00004000); setup_mux(); } else if (ps8802_detect(&usbc1_ps8802) == EC_SUCCESS) { set_cbi_fw_config(0x00004001); setup_mux(); } } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, probe_setup_mux_backup, HOOK_PRIO_DEFAULT); const struct pi3dpx1207_usb_control pi3dpx1207_controls[] = { [USBC_PORT_C0] = { .enable_gpio = IOEX_USB_C0_DATA_EN, .dp_enable_gpio = GPIO_USB_C0_IN_HPD, }, [USBC_PORT_C1] = { }, }; BUILD_ASSERT(ARRAY_SIZE(pi3dpx1207_controls) == USBC_PORT_COUNT); const struct usb_mux usbc0_pi3dpx1207_usb_retimer = { .usb_port = USBC_PORT_C0, .i2c_port = I2C_PORT_TCPC0, .i2c_addr_flags = PI3DPX1207_I2C_ADDR_FLAGS, .driver = &pi3dpx1207_usb_retimer, }; struct usb_mux usb_muxes[] = { [USBC_PORT_C0] = { .usb_port = USBC_PORT_C0, .i2c_port = I2C_PORT_USB_AP_MUX, .i2c_addr_flags = AMD_FP5_MUX_I2C_ADDR_FLAGS, .driver = &amd_fp5_usb_mux_driver, .next_mux = &usbc0_pi3dpx1207_usb_retimer, }, [USBC_PORT_C1] = { /* Filled in dynamically at startup */ }, }; BUILD_ASSERT(ARRAY_SIZE(usb_muxes) == USBC_PORT_COUNT); /***************************************************************************** * Use FW_CONFIG to set correct configuration. */ void setup_fw_config(void) { /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_6AXIS_INT_L); /* Enable PS2 power interrupts */ gpio_enable_interrupt(GPIO_EN_PWR_TOUCHPAD_PS2); setup_mux(); } DECLARE_HOOK(HOOK_INIT, setup_fw_config, HOOK_PRIO_INIT_I2C + 2); /***************************************************************************** * Fan */ /* Physical fans. These are logically separate from pwm_channels. */ const struct fan_conf fan_conf_0 = { .flags = FAN_USE_RPM_MODE, .ch = MFT_CH_0, /* Use MFT id to control fan */ .pgood_gpio = -1, .enable_gpio = -1, }; const struct fan_rpm fan_rpm_0 = { .rpm_min = 3000, .rpm_start = 3000, .rpm_max = 4900, }; const struct fan_t fans[] = { [FAN_CH_0] = { .conf = &fan_conf_0, .rpm = &fan_rpm_0, }, }; BUILD_ASSERT(ARRAY_SIZE(fans) == FAN_CH_COUNT); const static struct ec_thermal_config thermal_thermistor = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(90), [EC_TEMP_THRESH_HALT] = C_TO_K(92), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(80), }, .temp_fan_off = C_TO_K(25), .temp_fan_max = C_TO_K(58), }; const static struct ec_thermal_config thermal_cpu = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(90), [EC_TEMP_THRESH_HALT] = C_TO_K(92), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(80), }, .temp_fan_off = C_TO_K(25), .temp_fan_max = C_TO_K(58), }; struct ec_thermal_config thermal_params[TEMP_SENSOR_COUNT]; static void setup_fans(void) { thermal_params[TEMP_SENSOR_CHARGER] = thermal_thermistor; thermal_params[TEMP_SENSOR_SOC] = thermal_thermistor; thermal_params[TEMP_SENSOR_CPU] = thermal_cpu; } DECLARE_HOOK(HOOK_INIT, setup_fans, HOOK_PRIO_DEFAULT); struct fan_step { int on; int off; int rpm; }; static const struct fan_step fan_table0[] = { {.on = 0, .off = 3, .rpm = 0}, {.on = 32, .off = 3, .rpm = 3000}, {.on = 65, .off = 53, .rpm = 3500}, {.on = 74, .off = 62, .rpm = 3800}, {.on = 82, .off = 71, .rpm = 4200}, {.on = 91, .off = 79, .rpm = 4500}, {.on = 100, .off = 88, .rpm = 4900}, }; /* All fan tables must have the same number of levels */ #define NUM_FAN_LEVELS ARRAY_SIZE(fan_table0) static const struct fan_step *fan_table = fan_table0; int fan_percent_to_rpm(int fan, int pct) { static int current_level; static int previous_pct; int i; /* * Compare the pct and previous pct, we have the three paths : * 1. decreasing path. (check the off point) * 2. increasing path. (check the on point) * 3. invariant path. (return the current RPM) */ if (pct < previous_pct) { for (i = current_level; i >= 0; i--) { if (pct <= fan_table[i].off) current_level = i - 1; else break; } } else if (pct > previous_pct) { for (i = current_level + 1; i < NUM_FAN_LEVELS; i++) { if (pct >= fan_table[i].on) current_level = i; else break; } } if (current_level < 0) current_level = 0; previous_pct = pct; if (fan_table[current_level].rpm != fan_get_rpm_target(FAN_CH(fan))) cprints(CC_THERMAL, "Setting fan RPM to %d", fan_table[current_level].rpm); return fan_table[current_level].rpm; } /* Battery functions */ #define SB_OPTIONALMFG_FUNCTION2 0x26 #define SMART_CHARGE_SUPPORT 0x01 #define SMART_CHARGE_ENABLE 0x02 #define SB_SMART_CHARGE_ENABLE 1 #define SB_SMART_CHARGE_DISABLE 0 static void sb_smart_charge_mode(int enable) { int val, rv; rv = sb_read(SB_OPTIONALMFG_FUNCTION2, &val); if (rv) return; if (val & SMART_CHARGE_SUPPORT) { if (enable) val |= SMART_CHARGE_ENABLE; else val &= ~SMART_CHARGE_ENABLE; sb_write(SB_OPTIONALMFG_FUNCTION2, val); } } /* Called on AP S3 -> S0 transition */ static void board_chipset_startup(void) { /* Normal charge current */ sb_smart_charge_mode(SB_SMART_CHARGE_DISABLE); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_startup, HOOK_PRIO_DEFAULT); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { /* SMART charge current */ sb_smart_charge_mode(SB_SMART_CHARGE_ENABLE); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT);