/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* EC for Samus board configuration */ #include "als.h" #include "adc.h" #include "adc_chip.h" #include "backlight.h" #include "battery.h" #include "capsense.h" #include "charger.h" #include "charge_state.h" #include "common.h" #include "console.h" #include "driver/accel_kionix.h" #include "driver/accel_kxcj9.h" #include "driver/accelgyro_lsm6ds0.h" #include "driver/als_isl29035.h" #include "driver/temp_sensor/tmp006.h" #include "extpower.h" #include "fan.h" #include "gesture.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_scan.h" #include "keyboard_8042.h" #include "keyboard_8042_sharedlib.h" #include "lid_switch.h" #include "lightbar.h" #include "motion_sense.h" #include "motion_lid.h" #include "peci.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "registers.h" #include "switch.h" #include "system.h" #include "task.h" #include "temp_sensor.h" #include "temp_sensor_chip.h" #include "timer.h" #include "thermal.h" #include "uart.h" #include "util.h" static void pd_mcu_interrupt(enum gpio_signal signal) { /* Exchange status with PD MCU. */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); } #include "gpio_list.h" /* power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_PP1050_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1050"}, {GPIO_PP1200_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1200"}, {GPIO_PP1800_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1800"}, {GPIO_VCORE_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_VCORE"}, {GPIO_PCH_SLP_S0_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S0_DEASSERTED"}, {GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {GPIO_PCH_SLP_S5_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S5_DEASSERTED"}, {GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"}, {GPIO_PCH_SUSWARN_L, POWER_SIGNAL_ACTIVE_HIGH, "SUSWARN_DEASSERTED"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* ADC channels. Must be in the exactly same order as in enum adc_channel. */ const struct adc_t adc_channels[] = { /* * EC internal temperature is calculated by * 273 + (295 - 450 * ADC_VALUE / ADC_READ_MAX) / 2 * = -225 * ADC_VALUE / ADC_READ_MAX + 420.5 */ {"ECTemp", LM4_ADC_SEQ0, -225, ADC_READ_MAX, 420, LM4_AIN_NONE, 0x0e /* TS0 | IE0 | END0 */, 0, 0}, /* * TODO(crosbug.com/p/23827): We don't know what to expect here, but * it's an analog input that's pulled high. We're using it as a battery * presence indicator for now. We'll return just 0 - ADC_READ_MAX for * now. */ {"BatteryTemp", LM4_ADC_SEQ2, 1, 1, 0, LM4_AIN(10), 0x06 /* IE0 | END0 */, LM4_GPIO_B, (1<<4)}, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { {4, 0}, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Physical fans. These are logically separate from pwm_channels. */ const struct fan_conf fan_conf_0 = { .flags = FAN_USE_RPM_MODE, .ch = 2, /* Use MFT id to control fan */ .pgood_gpio = -1, .enable_gpio = -1, }; const struct fan_conf fan_conf_1 = { .flags = FAN_USE_RPM_MODE, .ch = 3, /* Use MFT id to control fan */ .pgood_gpio = -1, .enable_gpio = -1, }; const struct fan_rpm fan_rpm_0 = { .rpm_min = 1000, .rpm_start = 1000, .rpm_max = 6350, }; struct fan_t fans[] = { { .conf = &fan_conf_0, .rpm = &fan_rpm_0, }, { .conf = &fan_conf_1, .rpm = &fan_rpm_0, }, }; BUILD_ASSERT(ARRAY_SIZE(fans) == CONFIG_FANS); /* I2C ports */ const struct i2c_port_t i2c_ports[] = { {"batt_chg", 0, 100, GPIO_I2C0_SCL, GPIO_I2C0_SDA}, {"lightbar", 1, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"thermal", 5, 100, GPIO_I2C5_SCL, GPIO_I2C5_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); #define TEMP_U40_REG_ADDR ((0x40 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U41_REG_ADDR ((0x44 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U42_REG_ADDR ((0x41 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U43_REG_ADDR ((0x45 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U115_REG_ADDR ((0x42 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U116_REG_ADDR ((0x43 << 1) | I2C_FLAG_BIG_ENDIAN) #define TEMP_U40_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U40_REG_ADDR) #define TEMP_U41_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U41_REG_ADDR) #define TEMP_U42_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U42_REG_ADDR) #define TEMP_U43_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U43_REG_ADDR) #define TEMP_U115_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U115_REG_ADDR) #define TEMP_U116_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U116_REG_ADDR) const struct tmp006_t tmp006_sensors[TMP006_COUNT] = { {"Charger", TEMP_U40_ADDR}, {"CPU", TEMP_U41_ADDR}, {"Left C", TEMP_U42_ADDR}, {"Right C", TEMP_U43_ADDR}, {"Right D", TEMP_U115_ADDR}, {"Left D", TEMP_U116_ADDR}, }; BUILD_ASSERT(ARRAY_SIZE(tmp006_sensors) == TMP006_COUNT); /* Temperature sensors data; must be in same order as enum temp_sensor_id. */ const struct temp_sensor_t temp_sensors[] = { {"PECI", TEMP_SENSOR_TYPE_CPU, peci_temp_sensor_get_val, 0, 2}, {"ECInternal", TEMP_SENSOR_TYPE_BOARD, chip_temp_sensor_get_val, 0, 4}, {"I2C-Charger-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 0, 7}, {"I2C-Charger-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 1, 7}, {"I2C-CPU-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 2, 7}, {"I2C-CPU-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 3, 7}, {"I2C-Left C-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 4, 7}, {"I2C-Left C-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 5, 7}, {"I2C-Right C-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 6, 7}, {"I2C-Right C-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 7, 7}, {"I2C-Right D-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 8, 7}, {"I2C-Right D-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 9, 7}, {"I2C-Left D-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 10, 7}, {"I2C-Left D-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 11, 7}, {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* ALS instances. Must be in same order as enum als_id. */ struct als_t als[] = { {"ISL", isl29035_init, isl29035_read_lux, 5}, }; BUILD_ASSERT(ARRAY_SIZE(als) == ALS_COUNT); /* Thermal limits for each temp sensor. All temps are in degrees K. Must be in * same order as enum temp_sensor_id. To always ignore any temp, use 0. */ struct ec_thermal_config thermal_params[] = { /* {Twarn, Thigh, Thalt}, fan_off, fan_max */ {{C_TO_K(95), C_TO_K(101), C_TO_K(104)}, {0, 0, 0}, C_TO_K(55), C_TO_K(90)}, /* PECI */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, /* EC */ {{0, 0, 0}, {0, 0, 0}, C_TO_K(41), C_TO_K(55)}, /* Charger die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, C_TO_K(35), C_TO_K(49)}, /* CPU die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Left C die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Right C die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Right D die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, C_TO_K(43), C_TO_K(54)}, /* Left D die */ {{0, 0, 0}, {0, 0, 0}, 0, 0}, {{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Battery */ }; BUILD_ASSERT(ARRAY_SIZE(thermal_params) == TEMP_SENSOR_COUNT); struct keyboard_scan_config keyscan_config = { .output_settle_us = 40, .debounce_down_us = 6 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 1500, .min_post_scan_delay_us = 1000, .poll_timeout_us = SECOND, .actual_key_mask = { 0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xf6, 0x55, 0xfa, 0xc8 /* full set */ }, }; /* Initialize board. */ static void board_init(void) { gpio_enable_interrupt(GPIO_PD_MCU_INT); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); #ifdef CONFIG_BATTERY_PRESENT_CUSTOM /** * Physical check of battery presence. */ enum battery_present battery_is_present(void) { /* * This pin has a pullup, so if it's not completely pegged there's * something attached. Probably a battery. */ int analog_val = adc_read_channel(ADC_CH_BAT_TEMP); return analog_val < (9 * ADC_READ_MAX / 10) ? BP_YES : BP_NO; } #endif static int discharging_on_ac; /** * Discharge battery when on AC power for factory test. */ int board_discharge_on_ac(int enable) { int rv = charger_discharge_on_ac(enable); if (rv == EC_SUCCESS) discharging_on_ac = enable; return rv; } /** * Check if we are discharging while connected to AC */ int board_is_discharging_on_ac(void) { return discharging_on_ac; } /** * Reset PD MCU */ void board_reset_pd_mcu(void) { gpio_set_level(GPIO_USB_MCU_RST, 1); usleep(100); gpio_set_level(GPIO_USB_MCU_RST, 0); } void sensor_board_proc_double_tap(void) { lightbar_sequence(LIGHTBAR_TAP); } const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = { GPIO_USB1_ENABLE, GPIO_USB2_ENABLE, }; /* Base Sensor mutex */ static struct mutex g_base_mutex; /* Lid Sensor mutex */ static struct mutex g_lid_mutex; /* kxcj9 local/private data */ struct kionix_accel_data g_kxcj9_data; /* lsm6ds0 local sensor data (per-sensor) */ struct lsm6ds0_data g_saved_data[2]; /* Four Motion sensors */ /* Matrix to rotate accelrator into standard reference frame */ const matrix_3x3_t base_standard_ref = { {FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; const matrix_3x3_t lid_standard_ref = { { 0, FLOAT_TO_FP(1), 0}, {FLOAT_TO_FP(-1), 0, 0}, { 0, 0, FLOAT_TO_FP(-1)} }; struct motion_sensor_t motion_sensors[] = { /* * Note: lsm6ds0: supports accelerometer and gyro sensor * Requirement: accelerometer sensor must init before gyro sensor * DO NOT change the order of the following table. */ {.name = "Base", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_LSM6DS0, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6ds0_drv, .mutex = &g_base_mutex, .drv_data = &g_saved_data[0], .port = I2C_PORT_ACCEL, .addr = LSM6DS0_ADDR1, .rot_standard_ref = &base_standard_ref, .default_range = 2, /* g, enough for laptop. */ .min_frequency = LSM6DS0_ACCEL_MIN_FREQ, .max_frequency = LSM6DS0_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 119000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Used for double tap */ [SENSOR_CONFIG_EC_S3] = { .odr = TAP_ODR | ROUND_UP_FLAG, .ec_rate = CONFIG_GESTURE_SAMPLING_INTERVAL_MS * MSEC, }, [SENSOR_CONFIG_EC_S5] = { .odr = TAP_ODR | ROUND_UP_FLAG, .ec_rate = CONFIG_GESTURE_SAMPLING_INTERVAL_MS * MSEC, }, }, }, {.name = "Lid", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_KXCJ9, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kxcj9_data, .port = I2C_PORT_ACCEL, .addr = KXCJ9_ADDR0, .rot_standard_ref = &lid_standard_ref, .default_range = 2, /* g, enough for laptop. */ .min_frequency = KXCJ9_ACCEL_MIN_FREQ, .max_frequency = KXCJ9_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 100000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, {.name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_LSM6DS0, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6ds0_drv, .mutex = &g_base_mutex, .drv_data = &g_saved_data[1], .port = I2C_PORT_ACCEL, .addr = LSM6DS0_ADDR1, .rot_standard_ref = NULL, .default_range = 2000, /* g, enough for laptop. */ .min_frequency = LSM6DS0_GYRO_MIN_FREQ, .max_frequency = LSM6DS0_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); #ifdef CONFIG_LOW_POWER_IDLE void jtag_interrupt(enum gpio_signal signal) { /* * This interrupt is the first sign someone is trying to use * the JTAG. Disable slow speed sleep so that the JTAG action * can take place. */ disable_sleep(SLEEP_MASK_JTAG); /* * Once we get this interrupt, disable it from occurring again * to avoid repeated interrupts when debugging via JTAG. */ gpio_disable_interrupt(GPIO_JTAG_TCK); } #endif /* CONFIG_LOW_POWER_IDLE */ enum ec_error_list keyboard_scancode_callback(uint16_t *make_code, int8_t pressed) { const uint16_t k = *make_code; static uint8_t s; static const uint16_t a[] = { SCANCODE_UP, SCANCODE_UP, SCANCODE_DOWN, SCANCODE_DOWN, SCANCODE_LEFT, SCANCODE_RIGHT, SCANCODE_LEFT, SCANCODE_RIGHT, SCANCODE_B, SCANCODE_A}; if (!pressed) return EC_SUCCESS; /* Lightbar demo mode: keyboard can fake the battery state */ switch (k) { case SCANCODE_UP: demo_battery_level(1); break; case SCANCODE_DOWN: demo_battery_level(-1); break; case SCANCODE_LEFT: demo_is_charging(0); break; case SCANCODE_RIGHT: demo_is_charging(1); break; case SCANCODE_F6: /* dim */ demo_brightness(-1); break; case SCANCODE_F7: /* bright */ demo_brightness(1); break; case SCANCODE_T: demo_tap(); break; } if (k == a[s]) s++; else if (k != a[0]) s = 0; else if (s != 2) s = 1; if (s == ARRAY_SIZE(a)) { s = 0; lightbar_sequence(LIGHTBAR_KONAMI); } return EC_SUCCESS; }