/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "atomic.h" #include "charge_manager.h" #include "common.h" #include "console.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "registers.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" #include "usb_mux.h" #include "usb_pd.h" #define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args) #define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args) /* Define typical operating power and max power */ #define OPERATING_POWER_MW 15000 #define MAX_POWER_MW 60000 #define MAX_CURRENT_MA 3000 /* * Do not request any voltage within this deadband region, where * we're not sure whether or not the boost or the bypass will be on. */ #define INPUT_VOLTAGE_DEADBAND_MIN 9700 #define INPUT_VOLTAGE_DEADBAND_MAX 11999 #define PDO_FIXED_FLAGS (PDO_FIXED_DUAL_ROLE | PDO_FIXED_DATA_SWAP |\ PDO_FIXED_COMM_CAP) const uint32_t pd_src_pdo[] = { PDO_FIXED(5000, 900, PDO_FIXED_FLAGS), }; const int pd_src_pdo_cnt = ARRAY_SIZE(pd_src_pdo); const uint32_t pd_snk_pdo[] = { PDO_FIXED(5000, 500, PDO_FIXED_FLAGS), PDO_BATT(4750, 21000, 15000), PDO_VAR(4750, 21000, 3000), }; const int pd_snk_pdo_cnt = ARRAY_SIZE(pd_snk_pdo); int pd_is_valid_input_voltage(int mv) { /* Allow any voltage not in the boost bypass deadband */ return (mv < INPUT_VOLTAGE_DEADBAND_MIN) || (mv > INPUT_VOLTAGE_DEADBAND_MAX); } void pd_transition_voltage(int idx) { /* No-operation: we are always 5V */ } int pd_set_power_supply_ready(int port) { /* provide VBUS */ gpio_set_level(port ? GPIO_USB_C1_5V_EN : GPIO_USB_C0_5V_EN, 1); /* notify host of power info change */ pd_send_host_event(PD_EVENT_POWER_CHANGE); return EC_SUCCESS; /* we are ready */ } void pd_power_supply_reset(int port) { /* Kill VBUS */ gpio_set_level(port ? GPIO_USB_C1_5V_EN : GPIO_USB_C0_5V_EN, 0); /* notify host of power info change */ pd_send_host_event(PD_EVENT_POWER_CHANGE); } void pd_set_input_current_limit(int port, uint32_t max_ma, uint32_t supply_voltage) { struct charge_port_info charge; charge.current = max_ma; charge.voltage = supply_voltage; charge_manager_update_charge(CHARGE_SUPPLIER_PD, port, &charge); } void typec_set_input_current_limit(int port, uint32_t max_ma, uint32_t supply_voltage) { struct charge_port_info charge; charge.current = max_ma; charge.voltage = supply_voltage; charge_manager_update_charge(CHARGE_SUPPLIER_TYPEC, port, &charge); } int pd_snk_is_vbus_provided(int port) { return gpio_get_level(port ? GPIO_USB_C1_VBUS_WAKE : GPIO_USB_C0_VBUS_WAKE); } int pd_board_checks(void) { return EC_SUCCESS; } int pd_check_power_swap(int port) { /* TODO: use battery level to decide to accept/reject power swap */ /* * Allow power swap as long as we are acting as a dual role device, * otherwise assume our role is fixed (not in S0 or console command * to fix our role). */ return pd_get_dual_role() == PD_DRP_TOGGLE_ON ? 1 : 0; } int pd_check_data_swap(int port, int data_role) { /* Allow data swap if we are a UFP, otherwise don't allow */ return (data_role == PD_ROLE_UFP) ? 1 : 0; } int pd_check_vconn_swap(int port) { /* in S5, do not allow vconn swap since pp5000 rail is off */ return gpio_get_level(GPIO_PCH_SLP_S5_L); } void pd_execute_data_swap(int port, int data_role) { } void pd_check_pr_role(int port, int pr_role, int flags) { /* * If partner is dual-role power and dualrole toggling is on, consider * if a power swap is necessary. */ if ((flags & PD_FLAGS_PARTNER_DR_POWER) && pd_get_dual_role() == PD_DRP_TOGGLE_ON) { /* * If we are a sink and partner is not externally powered, then * swap to become a source. If we are source and partner is * externally powered, swap to become a sink. */ int partner_extpower = flags & PD_FLAGS_PARTNER_EXTPOWER; if ((!partner_extpower && pr_role == PD_ROLE_SINK) || (partner_extpower && pr_role == PD_ROLE_SOURCE)) pd_request_power_swap(port); } } void pd_check_dr_role(int port, int dr_role, int flags) { /* If UFP, try to switch to DFP */ if ((flags & PD_FLAGS_PARTNER_DR_DATA) && dr_role == PD_ROLE_UFP) pd_request_data_swap(port); } /* ----------------- Vendor Defined Messages ------------------ */ const struct svdm_response svdm_rsp = { .identity = NULL, .svids = NULL, .modes = NULL, }; int pd_custom_vdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload) { int cmd = PD_VDO_CMD(payload[0]); uint16_t dev_id = 0; int is_rw, is_latest; /* make sure we have some payload */ if (cnt == 0) return 0; switch (cmd) { case VDO_CMD_VERSION: /* guarantee last byte of payload is null character */ *(payload + cnt - 1) = 0; CPRINTF("ver: %s\n", (char *)(payload+1)); break; case VDO_CMD_READ_INFO: case VDO_CMD_SEND_INFO: /* copy hash */ if (cnt == 7) { dev_id = VDO_INFO_HW_DEV_ID(payload[6]); is_rw = VDO_INFO_IS_RW(payload[6]); is_latest = pd_dev_store_rw_hash(port, dev_id, payload + 1, is_rw ? SYSTEM_IMAGE_RW : SYSTEM_IMAGE_RO); /* * Send update host event unless our RW hash is * already known to be the latest update RW. */ if (!is_rw || !is_latest) pd_send_host_event(PD_EVENT_UPDATE_DEVICE); CPRINTF("DevId:%d.%d SW:%d RW:%d\n", HW_DEV_ID_MAJ(dev_id), HW_DEV_ID_MIN(dev_id), VDO_INFO_SW_DBG_VER(payload[6]), is_rw); } else if (cnt == 6) { /* really old devices don't have last byte */ pd_dev_store_rw_hash(port, dev_id, payload + 1, SYSTEM_IMAGE_UNKNOWN); } break; case VDO_CMD_CURRENT: CPRINTF("Current: %dmA\n", payload[1]); break; case VDO_CMD_FLIP: usb_mux_flip(port); break; case VDO_CMD_GET_LOG: pd_log_recv_vdm(port, cnt, payload); break; } return 0; } static int dp_flags[CONFIG_USB_PD_PORT_COUNT]; /* DP Status VDM as returned by UFP */ static uint32_t dp_status[CONFIG_USB_PD_PORT_COUNT]; static void svdm_safe_dp_mode(int port) { /* make DP interface safe until configure */ usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_CONNECT, 0); dp_flags[port] = 0; dp_status[port] = 0; } static int svdm_enter_dp_mode(int port, uint32_t mode_caps) { /* Only enter mode if device is DFP_D capable */ if (mode_caps & MODE_DP_SNK) { svdm_safe_dp_mode(port); return 0; } return -1; } static int svdm_dp_status(int port, uint32_t *payload) { int opos = pd_alt_mode(port, USB_SID_DISPLAYPORT); payload[0] = VDO(USB_SID_DISPLAYPORT, 1, CMD_DP_STATUS | VDO_OPOS(opos)); payload[1] = VDO_DP_STATUS(0, /* HPD IRQ ... not applicable */ 0, /* HPD level ... not applicable */ 0, /* exit DP? ... no */ 0, /* usb mode? ... no */ 0, /* multi-function ... no */ (!!(dp_flags[port] & DP_FLAGS_DP_ON)), 0, /* power low? ... no */ (!!(dp_flags[port] & DP_FLAGS_DP_ON))); return 2; }; static int svdm_dp_config(int port, uint32_t *payload) { int opos = pd_alt_mode(port, USB_SID_DISPLAYPORT); int mf_pref = PD_VDO_DPSTS_MF_PREF(dp_status[port]); int pin_mode = pd_dfp_dp_get_pin_mode(port, dp_status[port]); if (!pin_mode) return 0; usb_mux_set(port, mf_pref ? TYPEC_MUX_DOCK : TYPEC_MUX_DP, USB_SWITCH_CONNECT, pd_get_polarity(port)); payload[0] = VDO(USB_SID_DISPLAYPORT, 1, CMD_DP_CONFIG | VDO_OPOS(opos)); payload[1] = VDO_DP_CFG(pin_mode, /* pin mode */ 1, /* DPv1.3 signaling */ 2); /* UFP_U connected as UFP_D */ return 2; }; #define PORT_TO_HPD(port) ((port) ? GPIO_USB_C1_DP_HPD : GPIO_USB_C0_DP_HPD) static void svdm_dp_post_config(int port) { dp_flags[port] |= DP_FLAGS_DP_ON; if (!(dp_flags[port] & DP_FLAGS_HPD_HI_PENDING)) return; gpio_set_level(PORT_TO_HPD(port), 1); } static void hpd0_irq_deferred(void) { gpio_set_level(GPIO_USB_C0_DP_HPD, 1); } static void hpd1_irq_deferred(void) { gpio_set_level(GPIO_USB_C1_DP_HPD, 1); } DECLARE_DEFERRED(hpd0_irq_deferred); DECLARE_DEFERRED(hpd1_irq_deferred); #define PORT_TO_HPD_IRQ_DEFERRED(port) ((port) ? \ &hpd1_irq_deferred_data : \ &hpd0_irq_deferred_data) static int svdm_dp_attention(int port, uint32_t *payload) { int cur_lvl; int lvl = PD_VDO_DPSTS_HPD_LVL(payload[1]); int irq = PD_VDO_DPSTS_HPD_IRQ(payload[1]); enum gpio_signal hpd = PORT_TO_HPD(port); cur_lvl = gpio_get_level(hpd); dp_status[port] = payload[1]; /* Its initial DP status message prior to config */ if (!(dp_flags[port] & DP_FLAGS_DP_ON)) { if (lvl) dp_flags[port] |= DP_FLAGS_HPD_HI_PENDING; return 1; } if (irq & cur_lvl) { gpio_set_level(hpd, 0); hook_call_deferred(PORT_TO_HPD_IRQ_DEFERRED(port), HPD_DSTREAM_DEBOUNCE_IRQ); } else if (irq & !cur_lvl) { CPRINTF("ERR:HPD:IRQ&LOW\n"); return 0; /* nak */ } else { gpio_set_level(hpd, lvl); } /* ack */ return 1; } static void svdm_exit_dp_mode(int port) { svdm_safe_dp_mode(port); gpio_set_level(PORT_TO_HPD(port), 0); } static int svdm_enter_gfu_mode(int port, uint32_t mode_caps) { /* Always enter GFU mode */ return 0; } static void svdm_exit_gfu_mode(int port) { } static int svdm_gfu_status(int port, uint32_t *payload) { /* * This is called after enter mode is successful, send unstructured * VDM to read info. */ pd_send_vdm(port, USB_VID_GOOGLE, VDO_CMD_READ_INFO, NULL, 0); return 0; } static int svdm_gfu_config(int port, uint32_t *payload) { return 0; } static int svdm_gfu_attention(int port, uint32_t *payload) { return 0; } const struct svdm_amode_fx supported_modes[] = { { .svid = USB_SID_DISPLAYPORT, .enter = &svdm_enter_dp_mode, .status = &svdm_dp_status, .config = &svdm_dp_config, .post_config = &svdm_dp_post_config, .attention = &svdm_dp_attention, .exit = &svdm_exit_dp_mode, }, { .svid = USB_VID_GOOGLE, .enter = &svdm_enter_gfu_mode, .status = &svdm_gfu_status, .config = &svdm_gfu_config, .attention = &svdm_gfu_attention, .exit = &svdm_exit_gfu_mode, } }; const int supported_modes_cnt = ARRAY_SIZE(supported_modes);