/* Copyright 2017 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "adc.h" #include "chip/stm32/registers.h" #include "console.h" #include "ec_commands.h" #include "gpio.h" #include "usb_pd_tcpm.h" /* USB Power delivery board configuration */ #ifndef __CROS_EC_USB_PD_CONFIG_H #define __CROS_EC_USB_PD_CONFIG_H /* NOTES: Servo V4 and glados equivalents: * Glados Servo V4 * C0 CHG * C1 DUT * */ #define CHG 0 #define DUT 1 /* Timer selection for baseband PD communication */ #define TIM_CLOCK_PD_TX_CHG 16 #define TIM_CLOCK_PD_RX_CHG 1 #define TIM_CLOCK_PD_TX_DUT 15 #define TIM_CLOCK_PD_RX_DUT 3 /* Timer channel */ #define TIM_TX_CCR_CHG 1 #define TIM_RX_CCR_CHG 1 #define TIM_TX_CCR_DUT 2 #define TIM_RX_CCR_DUT 1 #define TIM_CLOCK_PD_TX(p) ((p) ? TIM_CLOCK_PD_TX_DUT : TIM_CLOCK_PD_TX_CHG) #define TIM_CLOCK_PD_RX(p) ((p) ? TIM_CLOCK_PD_RX_DUT : TIM_CLOCK_PD_RX_CHG) /* RX timer capture/compare register */ #define TIM_CCR_CHG (&STM32_TIM_CCRx(TIM_CLOCK_PD_RX_CHG, TIM_RX_CCR_CHG)) #define TIM_CCR_DUT (&STM32_TIM_CCRx(TIM_CLOCK_PD_RX_DUT, TIM_RX_CCR_DUT)) #define TIM_RX_CCR_REG(p) ((p) ? TIM_CCR_DUT : TIM_CCR_CHG) /* TX and RX timer register */ #define TIM_REG_TX_CHG (STM32_TIM_BASE(TIM_CLOCK_PD_TX_CHG)) #define TIM_REG_RX_CHG (STM32_TIM_BASE(TIM_CLOCK_PD_RX_CHG)) #define TIM_REG_TX_DUT (STM32_TIM_BASE(TIM_CLOCK_PD_TX_DUT)) #define TIM_REG_RX_DUT (STM32_TIM_BASE(TIM_CLOCK_PD_RX_DUT)) #define TIM_REG_TX(p) ((p) ? TIM_REG_TX_DUT : TIM_REG_TX_CHG) #define TIM_REG_RX(p) ((p) ? TIM_REG_RX_DUT : TIM_REG_RX_CHG) /* use the hardware accelerator for CRC */ #define CONFIG_HW_CRC /* Servo v4 CC configuration */ #define CC_DETACH BIT(0) /* Emulate detach: both CC open */ #define CC_DISABLE_DTS BIT(1) /* Apply resistors to single or both CC? */ #define CC_ALLOW_SRC BIT(2) /* Allow charge through by policy? */ #define CC_ENABLE_DRP BIT(3) /* Enable dual-role port */ #define CC_SNK_WITH_PD BIT(4) /* Force enabling PD comm for sink role */ #define CC_POLARITY BIT(5) /* CC polarity */ /* Servo v4 DP alt-mode configuration */ #define ALT_DP_ENABLE BIT(0) /* Enable DP alt-mode or not */ #define ALT_DP_PIN_C BIT(1) /* Pin assignment C supported */ #define ALT_DP_PIN_D BIT(2) /* Pin assignment D supported */ #define ALT_DP_PIN_E BIT(3) /* Pin assignment E supported */ #define ALT_DP_MF_PREF BIT(4) /* Multi-Function preferred */ #define ALT_DP_PLUG BIT(5) /* Plug or receptacle */ #define ALT_DP_OVERRIDE_HPD BIT(6) /* Override the HPD signal */ #define ALT_DP_HPD_LVL BIT(7) /* HPD level if overridden */ /* TX uses SPI1 on PB3-4 for CHG port, SPI2 on PB 13-14 for DUT port */ #define SPI_REGS(p) ((p) ? STM32_SPI2_REGS : STM32_SPI1_REGS) static inline void spi_enable_clock(int port) { if (port == 0) STM32_RCC_APB2ENR |= STM32_RCC_PB2_SPI1; else STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI2; } /* DMA for transmit uses DMA CH3 for CHG and DMA_CH7 for DUT */ #define DMAC_SPI_TX(p) ((p) ? STM32_DMAC_CH7 : STM32_DMAC_CH3) /* RX uses COMP1 and TIM1_CH1 on port CHG and COMP2 and TIM3_CH1 for port DUT*/ /* DUT RX use CMP1, TIM3_CH1, DMA_CH6 */ #define CMP1OUTSEL STM32_COMP_CMP1OUTSEL_TIM3_IC1 /* CHG RX use CMP2, TIM1_CH1, DMA_CH2 */ #define CMP2OUTSEL STM32_COMP_CMP2OUTSEL_TIM1_IC1 #define TIM_TX_CCR_IDX(p) ((p) ? TIM_TX_CCR_DUT : TIM_TX_CCR_CHG) #define TIM_RX_CCR_IDX(p) ((p) ? TIM_RX_CCR_DUT : TIM_RX_CCR_CHG) #define TIM_CCR_CS 1 /* * EXTI line 21 is connected to the CMP1 output, * EXTI line 22 is connected to the CMP2 output, * CHG uses CMP2, and DUT uses CMP1. */ #define EXTI_COMP_MASK(p) ((p) ? (1 << 21) : BIT(22)) #define IRQ_COMP STM32_IRQ_COMP /* triggers packet detection on comparator falling edge */ #define EXTI_XTSR STM32_EXTI_FTSR /* DMA for receive uses DMA_CH2 for CHG and DMA_CH6 for DUT */ #define DMAC_TIM_RX(p) ((p) ? STM32_DMAC_CH6 : STM32_DMAC_CH2) /* the pins used for communication need to be hi-speed */ static inline void pd_set_pins_speed(int port) { if (port == 0) { /* 40 MHz pin speed on SPI PB3&4, * (USB_CHG_TX_CLKIN & USB_CHG_CC1_TX_DATA) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x000003C0; /* 40 MHz pin speed on TIM16_CH1 (PB8), * (USB_CHG_TX_CLKOUT) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x00030000; } else { /* 40 MHz pin speed on SPI PB13/14, * (USB_DUT_TX_CLKIN & USB_DUT_CC1_TX_DATA) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x3C000000; /* 40 MHz pin speed on TIM15_CH2 (PB15) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0xC0000000; } } /* Reset SPI peripheral used for TX */ static inline void pd_tx_spi_reset(int port) { if (port == 0) { /* Reset SPI1 */ STM32_RCC_APB2RSTR |= BIT(12); STM32_RCC_APB2RSTR &= ~BIT(12); } else { /* Reset SPI2 */ STM32_RCC_APB1RSTR |= BIT(14); STM32_RCC_APB1RSTR &= ~BIT(14); } } static const uint8_t tx_gpio[2 /* port */][2 /* polarity */] = { { GPIO_USB_CHG_CC1_TX_DATA, GPIO_USB_CHG_CC2_TX_DATA }, { GPIO_USB_DUT_CC1_TX_DATA, GPIO_USB_DUT_CC2_TX_DATA }, }; static const uint8_t ref_gpio[2 /* port */][2 /* polarity */] = { { GPIO_USB_CHG_CC1_PD, GPIO_USB_CHG_CC2_PD }, { GPIO_USB_DUT_CC1_PD, GPIO_USB_DUT_CC2_PD }, }; /* Drive the CC line from the TX block */ static inline void pd_tx_enable(int port, int polarity) { #ifndef VIF_BUILD /* genvif doesn't like tricks with GPIO macros */ const struct gpio_info *tx = gpio_list + tx_gpio[port][polarity]; const struct gpio_info *ref = gpio_list + ref_gpio[port][polarity]; /* use directly GPIO registers, latency before the PD preamble is key */ /* switch the TX pin Mode from Input (00) to Alternate (10) for SPI */ STM32_GPIO_MODER(tx->port) |= 2 << ((31 - __builtin_clz(tx->mask)) * 2); /* switch the ref pin Mode from analog (11) to Out (01) for low level */ STM32_GPIO_MODER(ref->port) &= ~(2 << ((31 - __builtin_clz(ref->mask)) * 2)); #endif /* !VIF_BUILD */ } /* Put the TX driver in Hi-Z state */ static inline void pd_tx_disable(int port, int polarity) { const struct gpio_info *tx = gpio_list + tx_gpio[port][polarity]; const struct gpio_info *ref = gpio_list + ref_gpio[port][polarity]; gpio_set_flags_by_mask(tx->port, tx->mask, GPIO_INPUT); gpio_set_flags_by_mask(ref->port, ref->mask, GPIO_ANALOG); } /* we know the plug polarity, do the right configuration */ static inline void pd_select_polarity(int port, int polarity) { uint32_t val = STM32_COMP_CSR; /* Use window mode so that COMP1 and COMP2 share non-inverting input */ val |= STM32_COMP_CMP1EN | STM32_COMP_CMP2EN | STM32_COMP_WNDWEN; if (port == 0) { /* CHG use the right comparator inverted input for COMP2 */ STM32_COMP_CSR = (val & ~STM32_COMP_CMP2INSEL_MASK) | (polarity ? STM32_COMP_CMP2INSEL_INM4 /* PA4: C0_CC2 */ : STM32_COMP_CMP2INSEL_INM6); /* PA2: C0_CC1 */ } else { /* DUT use the right comparator inverted input for COMP1 */ STM32_COMP_CSR = (val & ~STM32_COMP_CMP1INSEL_MASK) | (polarity ? STM32_COMP_CMP1INSEL_INM5 /* PA5: C1_CC2 */ : STM32_COMP_CMP1INSEL_INM6); /* PA0: C1_CC1 */ } } /* Initialize pins used for TX and put them in Hi-Z */ static inline void pd_tx_init(void) { const struct gpio_info *c2 = gpio_list + GPIO_USB_CHG_CC2_TX_DATA; const struct gpio_info *c1 = gpio_list + GPIO_USB_CHG_CC1_TX_DATA; const struct gpio_info *d2 = gpio_list + GPIO_USB_DUT_CC2_TX_DATA; const struct gpio_info *d1 = gpio_list + GPIO_USB_DUT_CC1_TX_DATA; gpio_config_module(MODULE_USB_PD, 1); /* Select the proper alternate SPI function on TX_DATA pins */ /* USB_CHG_CC2_TX_DATA: PA6 is SPI1 MISO (AF0) */ gpio_set_alternate_function(c2->port, c2->mask, 0); gpio_set_flags_by_mask(c2->port, c2->mask, GPIO_INPUT); /* USB_CHG_CC1_TX_DATA: PB4 is SPI1 MISO (AF0) */ gpio_set_alternate_function(c1->port, c1->mask, 0); gpio_set_flags_by_mask(c1->port, c1->mask, GPIO_INPUT); /* USB_DUT_CC2_TX_DATA: PC2 is SPI2 MISO (AF1) */ gpio_set_alternate_function(d2->port, d2->mask, 1); gpio_set_flags_by_mask(d2->port, d2->mask, GPIO_INPUT); /* USB_DUT_CC1_TX_DATA: PB14 is SPI2 MISO (AF0) */ gpio_set_alternate_function(d1->port, d1->mask, 0); gpio_set_flags_by_mask(d1->port, d1->mask, GPIO_INPUT); } static inline void pd_set_host_mode(int port, int enable) { /* * CHG (port == 0) port has fixed Rd attached and therefore can only * present as a SNK device. If port != DUT (port == 1), then nothing to * do in this function. */ if (!port) return; if (enable) { /* * Servo_v4 in SRC mode acts as a DTS (debug test * accessory) and needs to present Rp on both CC * lines. In order to support orientation detection, and * advertise the correct TypeC current level, the * values of Rp1/Rp2 need to asymmetric with Rp1 > Rp2. This * function is called without a specified Rp value so assume the * servo_v4 default of USB level current. If a higher current * can be supported, then the Rp value will get adjusted when * VBUS is enabled. */ pd_set_rp_rd(port, TYPEC_CC_RP, TYPEC_RP_USB); gpio_set_flags(GPIO_USB_DUT_CC1_TX_DATA, GPIO_INPUT); gpio_set_flags(GPIO_USB_DUT_CC2_TX_DATA, GPIO_INPUT); } else { /* Select Rd, the Rp value is a don't care */ pd_set_rp_rd(port, TYPEC_CC_RD, TYPEC_RP_RESERVED); } } /** * Initialize various GPIOs and interfaces to safe state at start of pd_task. * * These include: * VBUS, charge path based on power role. * Physical layer CC transmit. * * @param port USB-C port number * @param power_role Power role of device */ static inline void pd_config_init(int port, uint8_t power_role) { /* * Set CC pull resistors. The PD state machine will then transit and * enable VBUS after it detects valid voltages on CC lines. */ pd_set_host_mode(port, power_role); /* Initialize TX pins and put them in Hi-Z */ pd_tx_init(); } int pd_adc_read(int port, int cc); #endif /* __CROS_EC_USB_PD_CONFIG_H */