/* Copyright 2021 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Storo configuration */ #include "adc_chip.h" #include "button.h" #include "cbi_fw_config.h" #include "cbi_ssfc.h" #include "charge_manager.h" #include "charge_state.h" #include "charger.h" #include "cros_board_info.h" #include "driver/accel_bma2x2.h" #include "driver/accel_kionix.h" #include "driver/accel_lis2dw12.h" #include "driver/accelgyro_bmi260.h" #include "driver/accelgyro_bmi_common.h" #include "driver/accelgyro_icm42607.h" #include "driver/accelgyro_icm_common.h" #include "driver/bc12/pi3usb9201.h" #include "driver/charger/isl923x.h" #include "driver/retimer/tusb544.h" #include "driver/tcpm/raa489000.h" #include "driver/temp_sensor/thermistor.h" #include "driver/usb_mux/it5205.h" #include "gpio.h" #include "hooks.h" #include "intc.h" #include "keyboard_raw.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "tcpm/tcpci.h" #include "temp_sensor.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ##args) #define CPRINTF(format, args...) cprints(CC_SYSTEM, format, ##args) #define INT_RECHECK_US 5000 /* C0 interrupt line shared by BC 1.2 and charger */ static void check_c0_line(void); DECLARE_DEFERRED(check_c0_line); static void notify_c0_chips(void) { schedule_deferred_pd_interrupt(0); usb_charger_task_set_event(0, USB_CHG_EVENT_BC12); } static void check_c0_line(void) { /* * If line is still being held low, see if there's more to process from * one of the chips */ if (!gpio_get_level(GPIO_USB_C0_INT_ODL)) { notify_c0_chips(); hook_call_deferred(&check_c0_line_data, INT_RECHECK_US); } } static void usb_c0_interrupt(enum gpio_signal s) { /* Cancel any previous calls to check the interrupt line */ hook_call_deferred(&check_c0_line_data, -1); /* Notify all chips using this line that an interrupt came in */ notify_c0_chips(); /* Check the line again in 5ms */ hook_call_deferred(&check_c0_line_data, INT_RECHECK_US); } /* C1 interrupt line shared by BC 1.2, TCPC, and charger */ static void check_c1_line(void); DECLARE_DEFERRED(check_c1_line); static void notify_c1_chips(void) { schedule_deferred_pd_interrupt(1); usb_charger_task_set_event(1, USB_CHG_EVENT_BC12); } static void check_c1_line(void) { /* * If line is still being held low, see if there's more to process from * one of the chips. */ if (!gpio_get_level(GPIO_USB_C1_INT_ODL)) { notify_c1_chips(); hook_call_deferred(&check_c1_line_data, INT_RECHECK_US); } } static void usb_c1_interrupt(enum gpio_signal s) { /* Cancel any previous calls to check the interrupt line */ hook_call_deferred(&check_c1_line_data, -1); /* Notify all chips using this line that an interrupt came in */ notify_c1_chips(); /* Check the line again in 5ms */ hook_call_deferred(&check_c1_line_data, INT_RECHECK_US); } static void c0_ccsbu_ovp_interrupt(enum gpio_signal s) { cprints(CC_USBPD, "C0: CC OVP, SBU OVP, or thermal event"); pd_handle_cc_overvoltage(0); } static void pen_detect_interrupt(enum gpio_signal s) { int pen_detect = !gpio_get_level(GPIO_PEN_DET_ODL); gpio_set_level(GPIO_EN_PP3300_PEN, pen_detect); } /* Must come after other header files and interrupt handler declarations */ #include "gpio_list.h" /* ADC channels */ const struct adc_t adc_channels[] = { [ADC_VSNS_PP3300_A] = { .name = "PP3300_A_PGOOD", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH0 }, [ADC_TEMP_SENSOR_1] = { .name = "TEMP_SENSOR1", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH2 }, [ADC_TEMP_SENSOR_2] = { .name = "TEMP_SENSOR2", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH3 }, [ADC_TEMP_SENSOR_3] = { .name = "TEMP_SENSOR3", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH15 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* BC 1.2 chips */ const struct pi3usb9201_config_t pi3usb9201_bc12_chips[] = { { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS, .flags = PI3USB9201_ALWAYS_POWERED, }, { .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS, .flags = PI3USB9201_ALWAYS_POWERED, }, }; int pd_snk_is_vbus_provided(int port) { return pd_check_vbus_level(port, VBUS_PRESENT); } /* Charger chips */ const struct charger_config_t chg_chips[] = { [CHARGER_PRIMARY] = { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, [CHARGER_SECONDARY] = { .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; /* TCPCs */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_USB_C0, .addr_flags = RAA489000_TCPC0_I2C_FLAGS, }, .flags = TCPC_FLAGS_TCPCI_REV2_0, .drv = &raa489000_tcpm_drv, }, { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_SUB_USB_C1, .addr_flags = RAA489000_TCPC0_I2C_FLAGS, }, .flags = TCPC_FLAGS_TCPCI_REV2_0, .drv = &raa489000_tcpm_drv, }, }; /* USB Retimer */ enum tusb544_conf { USB_DP = 0, USB_DP_INV, USB, USB_INV, DP, DP_INV }; /* * Registers we care about of are all the same between NCS8510 and TUSB544, * so we leverage the driver of TUSB544 to control both of them. * * For EQ settings, these two chips are also almost the same, so we have one * set of EQ settings here for both of them as well. When you need to modify * the EQ settings, please make sure that both configurations are correct; * otherwise you need to separate EQ settings then. */ static int board_tusb544_set(const struct usb_mux *me, mux_state_t mux_state) { int rv = EC_SUCCESS; int reg; enum tusb544_conf usb_mode = 0; if (mux_state & USB_PD_MUX_USB_ENABLED) { if (mux_state & USB_PD_MUX_DP_ENABLED) { /* USB with DP */ usb_mode = (mux_state & USB_PD_MUX_POLARITY_INVERTED) ? USB_DP_INV : USB_DP; } else { /* USB without DP */ usb_mode = (mux_state & USB_PD_MUX_POLARITY_INVERTED) ? USB_INV : USB; } } else if (mux_state & USB_PD_MUX_DP_ENABLED) { /* DP without USB */ usb_mode = (mux_state & USB_PD_MUX_POLARITY_INVERTED) ? DP_INV : DP; } else { return EC_SUCCESS; } rv = i2c_read8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL6, ®); if (rv) return rv; reg |= TUSB544_VOD_DCGAIN_OVERRIDE; reg &= ~TUSB544_VOD_DCGAIN_SEL; reg |= (TUSB544_VOD_DCGAIN_SETTING_5 << 2); rv = i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL6, reg); if (rv) return rv; /* Write the retimer config byte */ if (usb_mode == USB_INV) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x15); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_1, 0xff); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_2, 0xff); } else if (usb_mode == USB) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x11); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_1, 0xff); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_2, 0xff); } else if (usb_mode == USB_DP_INV) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x1F); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_1, 0xff); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_2, 0xff); } else if (usb_mode == USB_DP) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x1B); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_1, 0xff); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_USB3_1_2, 0xff); } else if (usb_mode == DP_INV) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x1E); } else if (usb_mode == DP) { rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_GENERAL4, 0x1A); } rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_DISPLAYPORT_1, 0x66); rv |= i2c_write8(me->i2c_port, me->i2c_addr_flags, TUSB544_REG_DISPLAYPORT_2, 0x66); if (rv) return EC_ERROR_UNKNOWN; else return EC_SUCCESS; } /* USB Retimer */ const struct usb_mux_chain usbc1_retimer = { .mux = &(const struct usb_mux){ .usb_port = 1, .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = TUSB544_I2C_ADDR_FLAGS0, .driver = &tusb544_drv, .board_set = &board_tusb544_set, }, }; /* USB Muxes */ const struct usb_mux_chain usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .mux = &(const struct usb_mux){ .usb_port = 0, .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = IT5205_I2C_ADDR1_FLAGS, .driver = &it5205_usb_mux_driver, }, }, { .mux = &(const struct usb_mux){ .usb_port = 1, .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = IT5205_I2C_ADDR1_FLAGS, .driver = &it5205_usb_mux_driver, }, .next = &usbc1_retimer, }, }; void board_hibernate(void) { /* * Put all charger ICs present into low power mode before entering * z-state. */ raa489000_hibernate(CHARGER_PRIMARY, true); if (board_get_charger_chip_count() > 1) raa489000_hibernate(CHARGER_SECONDARY, true); } __override void board_ocpc_init(struct ocpc_data *ocpc) { /* There's no provision to measure Isys */ ocpc->chg_flags[CHARGER_SECONDARY] |= OCPC_NO_ISYS_MEAS_CAP; } __override void board_pulse_entering_rw(void) { /* * On the ITE variants, the EC_ENTERING_RW signal was connected to a pin * which is active high by default. This causes Cr50 to think that the * EC has jumped to its RW image even though this may not be the case. * The pin is changed to GPIO_EC_ENTERING_RW2. */ gpio_set_level(GPIO_EC_ENTERING_RW, 1); gpio_set_level(GPIO_EC_ENTERING_RW2, 1); usleep(MSEC); gpio_set_level(GPIO_EC_ENTERING_RW, 0); gpio_set_level(GPIO_EC_ENTERING_RW2, 0); } void board_reset_pd_mcu(void) { /* * Nothing to do. TCPC C0 is internal, TCPC C1 reset pin is not * connected to the EC. */ } __override void board_power_5v_enable(int enable) { /* * Motherboard has a GPIO to turn on the 5V regulator, but the sub-board * sets it through the charger GPIO. */ gpio_set_level(GPIO_EN_PP5000, !!enable); gpio_set_level(GPIO_EN_USB_A0_VBUS, !!enable); if (isl923x_set_comparator_inversion(1, !!enable)) CPRINTS("Failed to %sable sub rails!", enable ? "en" : "dis"); } uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; int regval; /* * The interrupt line is shared between the TCPC and BC1.2 detector IC. * Therefore, go out and actually read the alert registers to report the * alert status. */ if (!gpio_get_level(GPIO_USB_C0_INT_ODL)) { if (!tcpc_read16(0, TCPC_REG_ALERT, ®val)) { if (regval) status = PD_STATUS_TCPC_ALERT_0; } } /* Check whether TCPC 1 pulled the shared interrupt line */ if (!gpio_get_level(GPIO_USB_C1_INT_ODL)) { if (!tcpc_read16(1, TCPC_REG_ALERT, ®val)) { if (regval) status = PD_STATUS_TCPC_ALERT_1; } } return status; } int board_is_sourcing_vbus(int port) { int regval; tcpc_read(port, TCPC_REG_POWER_STATUS, ®val); return !!(regval & TCPC_REG_POWER_STATUS_SOURCING_VBUS); } int board_set_active_charge_port(int port) { int is_real_port = (port >= 0 && port < board_get_usb_pd_port_count()); int i; int old_port; if (!is_real_port && port != CHARGE_PORT_NONE) return EC_ERROR_INVAL; old_port = charge_manager_get_active_charge_port(); CPRINTS("New chg p%d", port); /* Disable all ports. */ if (port == CHARGE_PORT_NONE) { for (i = 0; i < board_get_usb_pd_port_count(); i++) { tcpc_write(i, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_LOW); raa489000_enable_asgate(i, false); } return EC_SUCCESS; } /* Check if port is sourcing VBUS. */ if (board_is_sourcing_vbus(port)) { CPRINTS("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < board_get_usb_pd_port_count(); i++) { if (i == port) continue; if (tcpc_write(i, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_LOW)) CPRINTS("p%d: sink path disable failed.", i); raa489000_enable_asgate(i, false); } /* * Stop the charger IC from switching while changing ports. Otherwise, * we can overcurrent the adapter we're switching to. (crbug.com/926056) */ if ((old_port != CHARGE_PORT_NONE) && (old_port != port)) charger_discharge_on_ac(1); /* Enable requested charge port. */ if (raa489000_enable_asgate(port, true) || tcpc_write(port, TCPC_REG_COMMAND, TCPC_REG_COMMAND_SNK_CTRL_HIGH)) { CPRINTS("p%d: sink path enable failed.", port); charger_discharge_on_ac(0); return EC_ERROR_UNKNOWN; } /* Allow the charger IC to begin/continue switching. */ charger_discharge_on_ac(0); return EC_SUCCESS; } __override void ocpc_get_pid_constants(int *kp, int *kp_div, int *ki, int *ki_div, int *kd, int *kd_div) { *kp = 3; *kp_div = 14; *ki = 3; *ki_div = 500; *kd = 4; *kd_div = 40; } __override void typec_set_source_current_limit(int port, enum tcpc_rp_value rp) { if (port < 0 || port > board_get_usb_pd_port_count()) return; raa489000_set_output_current(port, rp); } /* Sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* Matrices to rotate accelerometers into the standard reference. */ static const mat33_fp_t lid_standard_ref = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(1), 0, 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; static const mat33_fp_t base_standard_ref = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(-1), 0, 0 }, { 0, 0, FLOAT_TO_FP(1) } }; static struct accelgyro_saved_data_t g_bma253_data; static struct bmi_drv_data_t g_bmi160_data; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA255, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma2x2_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_bma253_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMA2x2_I2C_ADDR2_FLAGS, .rot_standard_ref = &lid_standard_ref, .default_range = 2, .min_frequency = BMA255_ACCEL_MIN_FREQ, .max_frequency = BMA255_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .default_range = 4, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); static const mat33_fp_t lid_lis2dwl_ref = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(1), 0, 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; /* Lid accel private data */ static struct stprivate_data g_lis2dwl_data; struct motion_sensor_t lis2dwl_lid_accel = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LIS2DWL, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &lis2dw12_drv, .mutex = &g_lid_mutex, .drv_data = &g_lis2dwl_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LIS2DWL_ADDR1_FLAGS, .rot_standard_ref = &lid_lis2dwl_ref, .default_range = 2, /* g */ .min_frequency = LIS2DW12_ODR_MIN_VAL, .max_frequency = LIS2DW12_ODR_MAX_VAL, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 12500 | ROUND_UP_FLAG, }, /* Sensor on for lid angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }; static const mat33_fp_t lid_KX022_ref = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(1), 0, 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; static struct kionix_accel_data g_kx022_data; struct motion_sensor_t kx022_lid_accel = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = KX022_ADDR1_FLAGS, .rot_standard_ref = &lid_KX022_ref, .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support tablet mode */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }; static struct icm_drv_data_t g_icm42607_data; const mat33_fp_t based_ref_icm42607 = { { FLOAT_TO_FP(1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(1) } }; struct motion_sensor_t icm42607_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM42607, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &icm42607_drv, .mutex = &g_base_mutex, .drv_data = &g_icm42607_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = ICM42607_ADDR0_FLAGS, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs.*/ .rot_standard_ref = &based_ref_icm42607, .min_frequency = ICM42607_ACCEL_MIN_FREQ, .max_frequency = ICM42607_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }; struct motion_sensor_t icm42607_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM42607, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &icm42607_drv, .mutex = &g_base_mutex, .drv_data = &g_icm42607_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = ICM42607_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &based_ref_icm42607, .min_frequency = ICM42607_GYRO_MIN_FREQ, .max_frequency = ICM42607_GYRO_MAX_FREQ, }; static struct bmi_drv_data_t g_bmi220_data; const mat33_fp_t based_ref_bmi220 = { { 0, FLOAT_TO_FP(1), 0 }, { FLOAT_TO_FP(-1), 0, 0 }, { 0, 0, FLOAT_TO_FP(1) } }; struct motion_sensor_t bmi220_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI220, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi260_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi220_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = BMI260_ADDR0_FLAGS, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs.*/ .rot_standard_ref = &based_ref_bmi220, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }; struct motion_sensor_t bmi220_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI220, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi260_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi220_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = BMI260_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &based_ref_bmi220, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }; void board_init(void) { int on; uint32_t board_id; gpio_enable_interrupt(GPIO_USB_C0_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_INT_ODL); /* * If interrupt lines are already low, schedule them to be processed * after inits are completed. */ if (!gpio_get_level(GPIO_USB_C0_INT_ODL)) hook_call_deferred(&check_c0_line_data, 0); if (!gpio_get_level(GPIO_USB_C1_INT_ODL)) hook_call_deferred(&check_c1_line_data, 0); gpio_enable_interrupt(GPIO_USB_C0_CCSBU_OVP_ODL); /* Enable Base Accel interrupt */ gpio_enable_interrupt(GPIO_BASE_SIXAXIS_INT_L); /* Enable gpio interrupt for pen detect */ gpio_enable_interrupt(GPIO_PEN_DET_ODL); /* Turn on 5V if the system is on, otherwise turn it off */ on = chipset_in_state(CHIPSET_STATE_ON | CHIPSET_STATE_ANY_SUSPEND | CHIPSET_STATE_SOFT_OFF); board_power_5v_enable(on); if (!gpio_get_level(GPIO_PEN_DET_ODL)) gpio_set_level(GPIO_EN_PP3300_PEN, 1); cbi_get_board_version(&board_id); if (board_id > 2) { if (get_cbi_fw_config_tablet_mode()) { if (get_cbi_ssfc_base_sensor() == SSFC_SENSOR_ICM42607) { motion_sensors[BASE_ACCEL] = icm42607_base_accel; motion_sensors[BASE_GYRO] = icm42607_base_gyro; CPRINTF("BASE GYRO is ICM42607"); } else if (get_cbi_ssfc_base_sensor() == SSFC_SENSOR_BMI220) { motion_sensors[BASE_ACCEL] = bmi220_base_accel; motion_sensors[BASE_GYRO] = bmi220_base_gyro; CPRINTF("BASE GYRO is BMI220"); } else { CPRINTF("BASE GYRO is BMI160"); } if (get_cbi_ssfc_lid_sensor() == SSFC_SENSOR_LIS2DWL) { motion_sensors[LID_ACCEL] = lis2dwl_lid_accel; CPRINTF("LID_ACCEL is LIS2DWL"); } else if (get_cbi_ssfc_lid_sensor() == SSFC_SENSOR_KX022) { motion_sensors[LID_ACCEL] = kx022_lid_accel; CPRINTF("LID_ACCEL is KX022"); } else { CPRINTF("LID_ACCEL is BMA253"); } } else { motion_sensor_count = 0; gmr_tablet_switch_disable(); /* * Base accel is not stuffed, don't allow * line to float. */ gpio_set_flags(GPIO_BASE_SIXAXIS_INT_L, GPIO_INPUT | GPIO_PULL_DOWN); } } else { if (get_cbi_ssfc_base_sensor() == SSFC_SENSOR_ICM42607) { motion_sensors[BASE_ACCEL] = icm42607_base_accel; motion_sensors[BASE_GYRO] = icm42607_base_gyro; CPRINTF("BASE GYRO is ICM42607"); } else if (get_cbi_ssfc_base_sensor() == SSFC_SENSOR_BMI220) { motion_sensors[BASE_ACCEL] = bmi220_base_accel; motion_sensors[BASE_GYRO] = bmi220_base_gyro; CPRINTF("BASE GYRO is BMI220"); } else { CPRINTF("BASE GYRO is BMI160"); } if (get_cbi_ssfc_lid_sensor() == SSFC_SENSOR_LIS2DWL) { motion_sensors[LID_ACCEL] = lis2dwl_lid_accel; CPRINTF("LID_ACCEL is LIS2DWL"); } else if (get_cbi_ssfc_lid_sensor() == SSFC_SENSOR_KX022) { motion_sensors[LID_ACCEL] = kx022_lid_accel; CPRINTF("LID_ACCEL is KX022"); } else { CPRINTF("LID_ACCEL is BMA253"); } } } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); void motion_interrupt(enum gpio_signal signal) { switch (get_cbi_ssfc_base_sensor()) { case SSFC_SENSOR_ICM42607: icm42607_interrupt(signal); break; case SSFC_SENSOR_BMI220: bmi260_interrupt(signal); break; case SSFC_SENSOR_BMI160: default: bmi160_interrupt(signal); break; } } /* Thermistors */ const struct temp_sensor_t temp_sensors[] = { [TEMP_SENSOR_1] = { .name = "Memory", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_1 }, [TEMP_SENSOR_2] = { .name = "Ambient", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_2 }, [TEMP_SENSOR_3] = { .name = "Cpu", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_3 }, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* This callback disables keyboard when convertibles are fully open */ __override void lid_angle_peripheral_enable(int enable) { int chipset_in_s0 = chipset_in_state(CHIPSET_STATE_ON); /* * If the lid is in tablet position via other sensors, * ignore the lid angle, which might be faulty then * disable keyboard. */ if (tablet_get_mode()) enable = 0; if (enable) { keyboard_scan_enable(1, KB_SCAN_DISABLE_LID_ANGLE); } else { /* * Ensure that the chipset is off before disabling the keyboard. * When the chipset is on, the EC keeps the keyboard enabled and * the AP decides whether to ignore input devices or not. */ if (!chipset_in_s0) keyboard_scan_enable(0, KB_SCAN_DISABLE_LID_ANGLE); } }