/* Copyright 2014 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* USB Power delivery board configuration */ #ifndef __CROS_EC_USB_PD_CONFIG_H #define __CROS_EC_USB_PD_CONFIG_H #include "ina2xx.h" /* Timer selection for baseband PD communication */ #define TIM_CLOCK_PD_TX_C0 17 #define TIM_CLOCK_PD_RX_C0 1 #define TIM_CLOCK_PD_TX(p) TIM_CLOCK_PD_TX_C0 #define TIM_CLOCK_PD_RX(p) TIM_CLOCK_PD_RX_C0 /* TX and RX timer register */ #define TIM_REG_TX_C0 (STM32_TIM_BASE(TIM_CLOCK_PD_TX_C0)) #define TIM_REG_RX_C0 (STM32_TIM_BASE(TIM_CLOCK_PD_RX_C0)) #define TIM_REG_TX(p) TIM_REG_TX_C0 #define TIM_REG_RX(p) TIM_REG_RX_C0 /* Timer channel */ #define TIM_RX_CCR_C0 1 #define TIM_TX_CCR_C0 1 /* RX timer capture/compare register */ #define TIM_CCR_C0 (&STM32_TIM_CCRx(TIM_CLOCK_PD_RX_C0, TIM_RX_CCR_C0)) #define TIM_RX_CCR_REG(p) TIM_CCR_C0 /* use the hardware accelerator for CRC */ #define CONFIG_HW_CRC /* TX is using SPI1 on PA6/PB4 */ #define SPI_REGS(p) STM32_SPI1_REGS #define DMAC_SPI_TX(p) STM32_DMAC_CH3 static inline void spi_enable_clock(int port) { STM32_RCC_APB2ENR |= STM32_RCC_PB2_SPI1; } /* RX is using COMP1 or COMp2 triggering TIM1 CH1 */ #define CMP1OUTSEL STM32_COMP_CMP1OUTSEL_TIM1_IC1 #define CMP2OUTSEL STM32_COMP_CMP2OUTSEL_TIM1_IC1 #define DMAC_TIM_RX(p) STM32_DMAC_CH2 #define TIM_RX_CCR_IDX(p) TIM_RX_CCR_C0 #define TIM_TX_CCR_IDX(p) TIM_TX_CCR_C0 #define TIM_CCR_CS 1 #define EXTI_COMP_MASK(p) (BIT(21) | BIT(22)) #define IRQ_COMP STM32_IRQ_COMP /* triggers packet detection on comparator falling edge */ #define EXTI_XTSR STM32_EXTI_FTSR /* the pins used for communication need to be hi-speed */ static inline void pd_set_pins_speed(int port) { /* 40 MHz pin speed on SPI TX PB4 */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x00000300; /* 40 MHz pin speed on SPI TX PA6 */ STM32_GPIO_OSPEEDR(GPIO_A) |= 0x00003000; /* 40 MHz pin speed on TIM17_CH1 (PB9) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x000C0000; } /* Reset SPI peripheral used for TX */ static inline void pd_tx_spi_reset(int port) { /* Reset SPI1 */ STM32_RCC_APB2RSTR |= BIT(12); STM32_RCC_APB2RSTR &= ~BIT(12); } /* Drive the CC line from the TX block */ static inline void pd_tx_enable(int port, int polarity) { #if 0 /* Transmit only on the active CC line */ if (polarity) { gpio_set_level(GPIO_CC2_TX_EN, 1); /* TX_DATA on PA6 is now connected to SPI1 */ gpio_set_alternate_function(GPIO_A, 0x0040, 0); } else { gpio_set_level(GPIO_CC1_TX_EN, 1); /* TX_DATA on PB4 is now connected to SPI1 */ gpio_set_alternate_function(GPIO_B, 0x0010, 0); } #else /* Transmit on both CC lines */ gpio_set_level(GPIO_CC2_TX_EN, 1); gpio_set_level(GPIO_CC1_TX_EN, 1); /* TX_DATA on PA6 is now connected to SPI1 */ gpio_set_alternate_function(GPIO_A, 0x0040, 0); /* TX_DATA on PB4 is now connected to SPI1 */ gpio_set_alternate_function(GPIO_B, 0x0010, 0); #endif } /* Put the TX driver in Hi-Z state */ static inline void pd_tx_disable(int port, int polarity) { /* TX_DATA on PB4 is an output low GPIO to disable the FET */ STM32_GPIO_MODER(GPIO_B) = (STM32_GPIO_MODER(GPIO_B) & ~(3 << (2 * 4))) | (1 << (2 * 4)); /* TX_DATA on PA6 is an output low GPIO to disable the FET */ STM32_GPIO_MODER(GPIO_A) = (STM32_GPIO_MODER(GPIO_A) & ~(3 << (2 * 6))) | (1 << (2 * 6)); /* * Tri-state the low side after the high side * to ensure we are not going above Vnc */ gpio_set_level(GPIO_CC1_TX_EN, 0); gpio_set_level(GPIO_CC2_TX_EN, 0); } /* we know the plug polarity, do the right configuration */ static inline void pd_select_polarity(int port, int polarity) { /* use the right comparator */ STM32_COMP_CSR = (STM32_COMP_CSR & ~(STM32_COMP_CMP1INSEL_MASK | STM32_COMP_CMP2INSEL_MASK | STM32_COMP_CMP1EN | STM32_COMP_CMP2EN)) | STM32_COMP_CMP1INSEL_INM4 | STM32_COMP_CMP2INSEL_INM4 | (polarity ? STM32_COMP_CMP2EN : STM32_COMP_CMP1EN); } /* Initialize pins used for clocking */ static inline void pd_tx_init(void) { gpio_config_module(MODULE_USB_PD, 1); #ifndef CONFIG_USB_PD_TX_PHY_ONLY /* Detect when VBUS crosses the 4.5V threshold (1.25mV/bit) */ ina2xx_write(0, INA2XX_REG_ALERT, 4500 * 100 / 125); ina2xx_write(0, INA2XX_REG_MASK, INA2XX_MASK_EN_BOL); /* start as a power consumer */ gpio_set_level(GPIO_CC1_RD, 0); gpio_set_level(GPIO_CC2_RD, 0); #endif /* CONFIG_USB_PD_TX_PHY_ONLY */ } static inline void pd_set_host_mode(int port, int enable) { if (enable) { gpio_set_level(GPIO_CC1_RD, 1); gpio_set_level(GPIO_CC2_RD, 1); /* set Rp by driving high RPUSB GPIO */ gpio_set_flags(GPIO_CC1_RPUSB, GPIO_OUT_HIGH); gpio_set_flags(GPIO_CC2_RPUSB, GPIO_OUT_HIGH); } else { /* put back RPUSB GPIO in the default state and set Rd */ gpio_set_flags(GPIO_CC1_RPUSB, GPIO_ODR_HIGH); gpio_set_flags(GPIO_CC2_RPUSB, GPIO_ODR_HIGH); gpio_set_level(GPIO_CC1_RD, 0); gpio_set_level(GPIO_CC2_RD, 0); } } static inline void pd_config_init(int port, uint8_t power_role) { #ifndef CONFIG_USB_PD_TX_PHY_ONLY /* Set CC pull resistors */ pd_set_host_mode(port, power_role); #endif /* CONFIG_USB_PD_TX_PHY_ONLY */ /* Initialize TX pins and put them in Hi-Z */ pd_tx_init(); } static inline int pd_adc_read(int port, int cc) { if (cc == 0) return adc_read_channel(ADC_CH_CC1_PD); else return adc_read_channel(ADC_CH_CC2_PD); } #endif /* __CROS_EC_USB_PD_CONFIG_H */