/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Battery pack vendor provided charging profile */ #include "battery_fuel_gauge.h" #include "battery_smart.h" #include "charge_state.h" #include "common.h" #include "temp_sensor.h" #include "thermal.h" #include "util.h" /* * Battery info for all Zork battery types. Note that the fields * start_charging_min/max and charging_min/max are not used for the charger. * The effective temperature limits are given by discharging_min/max_c. * * Fuel Gauge (FG) parameters which are used for determining if the battery * is connected, the appropriate ship mode (battery cutoff) command, and the * charge/discharge FETs status. * * Ship mode (battery cutoff) requires 2 writes to the appropriate smart battery * register. For some batteries, the charge/discharge FET bits are set when * charging/discharging is active, in other types, these bits set mean that * charging/discharging is disabled. Therefore, in addition to the mask for * these bits, a disconnect value must be specified. Note that for TI fuel * gauge, the charge/discharge FET status is found in Operation Status (0x54), * but a read of Manufacturer Access (0x00) will return the lower 16 bits of * Operation status which contains the FET status bits. * * The assumption for battery types supported is that the charge/discharge FET * status can be read with a sb_read() command and therefore, only the register * address, mask, and disconnect value need to be provided. */ const struct board_batt_params board_battery_info[] = { /* SMP L19M3PG1 */ [BATTERY_SMP] = { .fuel_gauge = { .manuf_name = "SMP", .device_name = "L19M3PG1", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x34, .reg_mask = 0x0100, .disconnect_val = 0x0100, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 200, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 60, .charging_min_c = 0, .charging_max_c = 50, .discharging_min_c = -20, .discharging_max_c = 73, }, }, /* SMP L20M3PG1 57W * Gauge IC: TI BQ40Z696A */ [BATTERY_SMP_1] = { .fuel_gauge = { .manuf_name = "SMP", .device_name = "L20M3PG1", .ship_mode = { .reg_addr = 0x00, .reg_data = { 0x0010, 0x0010 }, }, .fet = { .mfgacc_support = 1, .reg_addr = 0x0000, .reg_mask = 0x6000, .disconnect_val = 0x6000, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 247, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* SMP L20M3PG0 47W * Gauge IC: TI BQ40Z696A */ [BATTERY_SMP_2] = { .fuel_gauge = { .manuf_name = "SMP", .device_name = "L20M3PG0", .ship_mode = { .reg_addr = 0x00, .reg_data = { 0x0010, 0x0010 }, }, .fet = { .mfgacc_support = 1, .reg_addr = 0x0000, .reg_mask = 0x6000, .disconnect_val = 0x6000, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* SMP L20M3PG3 47W * Gauge IC: Renesas RAJ240047 */ [BATTERY_SMP_3] = { .fuel_gauge = { .manuf_name = "SMP", .device_name = "L20M3PG3", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x0, .reg_mask = 0x0010, .disconnect_val = 0x0, }, }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* LGC L19L3PG1 */ [BATTERY_LGC] = { .fuel_gauge = { .manuf_name = "LGC", .device_name = "L19L3PG1", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x34, .reg_mask = 0x0100, .disconnect_val = 0x0100, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11550, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 200, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 60, .charging_min_c = 0, .charging_max_c = 50, .discharging_min_c = -20, .discharging_max_c = 73, }, }, /* LGC L20L3PG1 57W * Gauge IC: Renesas */ [BATTERY_LGC_1] = { .fuel_gauge = { .manuf_name = "LGC", .device_name = "L20L3PG1", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x0, .reg_mask = 0x0010, .disconnect_val = 0x0, }, }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11580, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* LGC L20L3PG0 47W * Gauge IC: Renesas */ [BATTERY_LGC_2] = { .fuel_gauge = { .manuf_name = "LGC", .device_name = "L20L3PG0", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x0, .reg_mask = 0x0010, .disconnect_val = 0x0, }, }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11580, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 256, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* Celxpert L19C3PG1 */ [BATTERY_CEL] = { .fuel_gauge = { .manuf_name = "Celxpert", .device_name = "L19C3PG1", .ship_mode = { .reg_addr = 0x34, .reg_data = { 0x0000, 0x1000 }, }, .fet = { .reg_addr = 0x34, .reg_mask = 0x0100, .disconnect_val = 0x0100, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 200, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 60, .charging_min_c = 0, .charging_max_c = 50, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* Celxpert L20C3PG0 57W * Gauge IC: TI */ [BATTERY_CEL_1] = { .fuel_gauge = { .manuf_name = "Celxpert", .device_name = "L20C3PG0", .ship_mode = { .reg_addr = 0x00, .reg_data = { 0x0010, 0x0010 }, }, .fet = { .mfgacc_support = 1, .reg_addr = 0x0000, .reg_mask = 0x6000, .disconnect_val = 0x6000, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 200, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* SUNWODA L20D3PG1 57W * Gauge IC: TI */ [BATTERY_SUNWODA] = { .fuel_gauge = { .manuf_name = "Sunwoda", .device_name = "L20D3PG1", .ship_mode = { .reg_addr = 0x00, .reg_data = { 0x0010, 0x0010 }, }, .fet = { .mfgacc_support = 1, .reg_addr = 0x0000, .reg_mask = 0x6000, .disconnect_val = 0x6000, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 250, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, /* SUNWODA L20D3PG0 47W * Gauge IC: TI */ [BATTERY_SUNWODA_1] = { .fuel_gauge = { .manuf_name = "Sunwoda", .device_name = "L20D3PG0", .ship_mode = { .reg_addr = 0x00, .reg_data = { 0x0010, 0x0010 }, }, .fet = { .mfgacc_support = 1, .reg_addr = 0x0000, .reg_mask = 0x6000, .disconnect_val = 0x6000, } }, .batt_info = { .voltage_max = 13200, /* mV */ .voltage_normal = 11520, /* mV */ .voltage_min = 9000, /* mV */ .precharge_current = 205, /* mA */ .start_charging_min_c = 0, .start_charging_max_c = 50, .charging_min_c = 0, .charging_max_c = 60, .discharging_min_c = -20, .discharging_max_c = 70, }, }, }; BUILD_ASSERT(ARRAY_SIZE(board_battery_info) == BATTERY_TYPE_COUNT); const enum battery_type DEFAULT_BATTERY_TYPE = BATTERY_SMP; struct chg_curr_step { int on; int off; int curr_ma; }; static const struct chg_curr_step chg_curr_table[] = { {.on = 0, .off = 35, .curr_ma = 2800}, {.on = 36, .off = 35, .curr_ma = 1500}, {.on = 39, .off = 38, .curr_ma = 1000}, }; /* All charge current tables must have the same number of levels */ #define NUM_CHG_CURRENT_LEVELS ARRAY_SIZE(chg_curr_table) int charger_profile_override(struct charge_state_data *curr) { int rv; int chg_temp_c; int current; int thermal_sensor0; static int current_level; static int prev_tmp; /* * Precharge must be executed when communication is failed on * dead battery. */ if (!(curr->batt.flags & BATT_FLAG_RESPONSIVE)) return 0; current = curr->requested_current; rv = temp_sensor_read(TEMP_SENSOR_CHARGER, &thermal_sensor0); chg_temp_c = K_TO_C(thermal_sensor0); if (rv != EC_SUCCESS) return 0; if (chipset_in_state(CHIPSET_STATE_ON)) { if (chg_temp_c < prev_tmp) { if (chg_temp_c <= chg_curr_table[current_level].off) current_level = current_level - 1; } else if (chg_temp_c > prev_tmp) { if (chg_temp_c >= chg_curr_table[current_level + 1].on) current_level = current_level + 1; } /* * Prevent level always minus 0 or over table steps. */ if (current_level < 0) current_level = 0; else if (current_level >= NUM_CHG_CURRENT_LEVELS) current_level = NUM_CHG_CURRENT_LEVELS - 1; prev_tmp = chg_temp_c; current = chg_curr_table[current_level].curr_ma; curr->requested_current = MIN(curr->requested_current, current); } return 0; } enum ec_status charger_profile_override_get_param(uint32_t param, uint32_t *value) { return EC_RES_INVALID_PARAM; } enum ec_status charger_profile_override_set_param(uint32_t param, uint32_t value) { return EC_RES_INVALID_PARAM; }