/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Wheelie board-specific configuration */ #include "adc_chip.h" #include "button.h" #include "charge_manager.h" #include "charge_state_v2.h" #include "charger.h" #include "driver/accel_lis2dh.h" #include "driver/accelgyro_lsm6dsm.h" #include "driver/bc12/pi3usb9201.h" #include "driver/charger/sm5803.h" #include "driver/sync.h" #include "driver/retimer/tusb544.h" #include "driver/temp_sensor/thermistor.h" #include "driver/tcpm/anx7447.h" #include "driver/tcpm/it83xx_pd.h" #include "driver/usb_mux/it5205.h" #include "gpio.h" #include "hooks.h" #include "intc.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "switch.h" #include "tablet_mode.h" #include "task.h" #include "tcpm/tcpci.h" #include "temp_sensor.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #define CPRINTUSB(format, args...) cprints(CC_USBCHARGE, format, ## args) /* C0 interrupt line shared by BC 1.2 and charger */ static void usb_c0_interrupt(enum gpio_signal s) { task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12); sm5803_interrupt(0); } /* C1 interrupt line shared by BC 1.2, TCPC, and charger */ static void usb_c1_interrupt(enum gpio_signal s) { schedule_deferred_pd_interrupt(1); task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12); sm5803_interrupt(1); } static void c0_ccsbu_ovp_interrupt(enum gpio_signal s) { cprints(CC_USBPD, "C0: CC OVP, SBU OVP, or thermal event"); pd_handle_cc_overvoltage(0); } /* Must come after other header files and interrupt handler declarations */ #include "gpio_list.h" /* ADC channels */ const struct adc_t adc_channels[] = { [ADC_VSNS_PP3300_A] = { .name = "PP3300_A_PGOOD", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH0 }, [ADC_TEMP_SENSOR_1] = { .name = "TEMP_SENSOR1", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH2 }, [ADC_TEMP_SENSOR_2] = { .name = "TEMP_SENSOR2", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH3 }, [ADC_SUB_ANALOG] = { .name = "SUB_ANALOG", .factor_mul = ADC_MAX_MVOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, .channel = CHIP_ADC_CH13 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* BC 1.2 chips */ const struct pi3usb9201_config_t pi3usb9201_bc12_chips[] = { { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS, }, { .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS, }, }; /* Charger chips */ const struct charger_config_t chg_chips[] = { [CHARGER_PRIMARY] = { .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = SM5803_ADDR_CHARGER_FLAGS, .drv = &sm5803_drv, }, [CHARGER_SECONDARY] = { .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = SM5803_ADDR_CHARGER_FLAGS, .drv = &sm5803_drv, }, }; /* TCPCs */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .bus_type = EC_BUS_TYPE_EMBEDDED, .drv = &it83xx_tcpm_drv, }, { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_SUB_USB_C1, .addr_flags = AN7447_TCPC0_I2C_ADDR_FLAGS, }, .drv = &anx7447_tcpm_drv, .flags = TCPC_FLAGS_TCPCI_REV2_0, }, }; /* USB Retimer */ const struct usb_mux usbc1_retimer = { .usb_port = 1, .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = TUSB544_I2C_ADDR_FLAGS0, .driver = &tusb544_drv, }; /* USB Muxes */ const struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .usb_port = 0, .i2c_port = I2C_PORT_USB_C0, .i2c_addr_flags = IT5205_I2C_ADDR1_FLAGS, .driver = &it5205_usb_mux_driver, }, { .usb_port = 1, .i2c_port = I2C_PORT_SUB_USB_C1, .i2c_addr_flags = AN7447_TCPC0_I2C_ADDR_FLAGS, .driver = &anx7447_usb_mux_driver, .next_mux = &usbc1_retimer, }, }; void board_init(void) { int on; gpio_enable_interrupt(GPIO_USB_C0_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_INT_ODL); gpio_enable_interrupt(GPIO_USB_C0_CCSBU_OVP_ODL); /* Charger on the MB will be outputting PROCHOT_ODL and OD CHG_DET */ sm5803_configure_gpio0(CHARGER_PRIMARY, GPIO0_MODE_PROCHOT, 1); sm5803_configure_chg_det_od(CHARGER_PRIMARY, 1); /* Charger on the sub-board will be a push-pull GPIO */ sm5803_configure_gpio0(CHARGER_SECONDARY, GPIO0_MODE_OUTPUT, 0); /* Turn on 5V if the system is on, otherwise turn it off */ on = chipset_in_state(CHIPSET_STATE_ON | CHIPSET_STATE_ANY_SUSPEND); board_power_5v_enable(on); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); void board_reset_pd_mcu(void) { /* * Nothing to do. TCPC C0 is internal, TCPC C1 reset pin is not * connected to the EC. */ } __override void board_power_5v_enable(int enable) { /* * Motherboard has a GPIO to turn on the 5V regulator, but the sub-board * sets it through the charger GPIO. */ gpio_set_level(GPIO_EN_PP5000, !!enable); if (sm5803_set_gpio0_level(1, !!enable)) CPRINTUSB("Failed to %sable sub rails!", enable ? "en" : "dis"); } uint16_t tcpc_get_alert_status(void) { /* * TCPC 0 is embedded in the EC and processes interrupts in the chip * code (it83xx/intc.c) */ uint16_t status = 0; int regval; /* Check whether TCPC 1 pulled the shared interrupt line */ if (!gpio_get_level(GPIO_USB_C1_INT_ODL)) { if (!tcpc_read16(1, TCPC_REG_ALERT, ®val)) { if (regval) status = PD_STATUS_TCPC_ALERT_1; } } return status; } void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { int icl = MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT); /* * TODO(b/151955431): Characterize the input current limit in case a * scaling needs to be applied here */ charge_set_input_current_limit(icl, charge_mv); } int board_set_active_charge_port(int port) { int is_valid_port = (port >= 0 && port < CONFIG_USB_PD_PORT_MAX_COUNT); int p0_otg, p1_otg; if (!is_valid_port && port != CHARGE_PORT_NONE) return EC_ERROR_INVAL; /* TODO(b/147440290): charger functions should take chgnum */ p0_otg = chg_chips[0].drv->is_sourcing_otg_power(0, 0); p1_otg = chg_chips[1].drv->is_sourcing_otg_power(1, 1); if (port == CHARGE_PORT_NONE) { CPRINTUSB("Disabling all charge ports"); if (!p0_otg) chg_chips[0].drv->set_mode(0, CHARGE_FLAG_INHIBIT_CHARGE); if (!p1_otg) chg_chips[1].drv->set_mode(1, CHARGE_FLAG_INHIBIT_CHARGE); return EC_SUCCESS; } CPRINTUSB("New chg p%d", port); /* * Charger task will take care of enabling charging on the new charge * port. Here, we ensure the other port is not charging by changing * CHG_EN */ if (port == 0) { if (p0_otg) { CPRINTUSB("Skip enable p%d", port); return EC_ERROR_INVAL; } if (!p1_otg) { chg_chips[1].drv->set_mode(1, CHARGE_FLAG_INHIBIT_CHARGE); } } else { if (p1_otg) { CPRINTUSB("Skip enable p%d", port); return EC_ERROR_INVAL; } if (!p0_otg) { chg_chips[0].drv->set_mode(0, CHARGE_FLAG_INHIBIT_CHARGE); } } return EC_SUCCESS; } /* Vconn control for integrated ITE TCPC */ void board_pd_vconn_ctrl(int port, enum usbpd_cc_pin cc_pin, int enabled) { /* Vconn control is only for port 0 */ if (port) return; if (cc_pin == USBPD_CC_PIN_1) gpio_set_level(GPIO_EN_USB_C0_CC1_VCONN, !!enabled); else gpio_set_level(GPIO_EN_USB_C0_CC2_VCONN, !!enabled); } __override void typec_set_source_current_limit(int port, enum tcpc_rp_value rp) { int current; if (port < 0 || port > CONFIG_USB_PD_PORT_MAX_COUNT) return; current = (rp == TYPEC_RP_3A0) ? 3000 : 1500; chg_chips[port].drv->set_otg_current_voltage(port, current, 5000); } /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { .channel = 0, .flags = PWM_CONFIG_DSLEEP, .freq_hz = 10000, }, [PWM_CH_LED_RED] = { .channel = 1, .flags = PWM_CONFIG_DSLEEP | PWM_CONFIG_ACTIVE_LOW, .freq_hz = 2400, }, [PWM_CH_LED_GREEN] = { .channel = 2, .flags = PWM_CONFIG_DSLEEP | PWM_CONFIG_ACTIVE_LOW, .freq_hz = 2400, }, [PWM_CH_LED_BLUE] = { .channel = 3, .flags = PWM_CONFIG_DSLEEP | PWM_CONFIG_ACTIVE_LOW, .freq_hz = 2400, } }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Sensor Mutexes */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* Sensor Data */ static struct stprivate_data g_lis2dh_data; static struct lsm6dsm_data lsm6dsm_data = LSM6DSM_DATA; /* Drivers */ struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LIS2DE, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &lis2dh_drv, .mutex = &g_lid_mutex, .drv_data = &g_lis2dh_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LIS2DH_ADDR1_FLAGS, .rot_standard_ref = NULL, .default_range = 2, /* g */ /* We only use 2g because its resolution is only 8-bits */ .min_frequency = LIS2DH_ODR_MIN_VAL, .max_frequency = LIS2DH_ODR_MAX_VAL, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DSM, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_ACCEL), .int_signal = GPIO_BASE_SIXAXIS_INT_L, .flags = MOTIONSENSE_FLAG_INT_SIGNAL, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .rot_standard_ref = NULL, .default_range = 4, /* g */ .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 13000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_LSM6DSM, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &lsm6dsm_drv, .mutex = &g_base_mutex, .drv_data = LSM6DSM_ST_DATA(lsm6dsm_data, MOTIONSENSE_TYPE_GYRO), .int_signal = GPIO_BASE_SIXAXIS_INT_L, .flags = MOTIONSENSE_FLAG_INT_SIGNAL, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = LSM6DSM_ADDR0_FLAGS, .default_range = 1000 | ROUND_UP_FLAG, /* dps */ .rot_standard_ref = NULL, .min_frequency = LSM6DSM_ODR_MIN_VAL, .max_frequency = LSM6DSM_ODR_MAX_VAL, }, [VSYNC] = { .name = "Camera VSYNC", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_GPIO, .type = MOTIONSENSE_TYPE_SYNC, .location = MOTIONSENSE_LOC_CAMERA, .drv = &sync_drv, .default_range = 0, .min_frequency = 0, .max_frequency = 1, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* Thermistors */ const struct temp_sensor_t temp_sensors[] = { [TEMP_SENSOR_1] = {.name = "Memory", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_1}, [TEMP_SENSOR_2] = {.name = "Ambient", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_2}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* This callback disables keyboard when convertibles are fully open */ __override void lid_angle_peripheral_enable(int enable) { int chipset_in_s0 = chipset_in_state(CHIPSET_STATE_ON); /* * If the lid is in tablet position via other sensors, * ignore the lid angle, which might be faulty then * disable keyboard. */ if (tablet_get_mode()) enable = 0; if (enable) { keyboard_scan_enable(1, KB_SCAN_DISABLE_LID_ANGLE); } else { /* * Ensure that the chipset is off before disabling the keyboard. * When the chipset is on, the EC keeps the keyboard enabled and * the AP decides whether to ignore input devices or not. */ if (!chipset_in_s0) keyboard_scan_enable(0, KB_SCAN_DISABLE_LID_ANGLE); } }