/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Hardware timers driver */ #include "cpu.h" #include "common.h" #include "hooks.h" #include "hwtimer.h" #include "registers.h" #include "task.h" #include "timer.h" #include "util.h" /* 128us (2^7 us) between 2 ticks */ #define TICK_INTERVAL_LOG2 7 #define TICK_INTERVAL (1 << TICK_INTERVAL_LOG2) #define TICK_INTERVAL_MASK (TICK_INTERVAL - 1) /* * Tick interval must fit in one byte, and must be greater than two * so that the duty cycle does not equal the cycle time (IT83XX_TMR_DCR_B0 must * be less than IT83XX_TMR_CTR_B0). */ BUILD_ASSERT(TICK_INTERVAL < 256 && TICK_INTERVAL > 2); static volatile uint32_t time_us; /* * Next event time of 0 represents "no event set". But, when we actually want * to trigger when the event time is 0, it is handled implicitly by calling * process_timers(1) when the timer value rolls over. */ static uint32_t next_event_time; void __hw_clock_event_set(uint32_t deadline) { next_event_time = deadline; } uint32_t __hw_clock_event_get(void) { return next_event_time; } void __hw_clock_event_clear(void) { next_event_time = 0; } uint32_t __hw_clock_source_read(void) { return time_us; } void __hw_clock_source_set(uint32_t ts) { time_us = ts & TICK_INTERVAL_MASK; } static void __hw_clock_source_irq(void) { /* * If this is a SW interrupt, then process the timers, but don't * increment the time_us. */ if (get_itype() & 8) { process_timers(0); return; } /* clear interrupt status */ task_clear_pending_irq(IT83XX_IRQ_TMR_B0); time_us += TICK_INTERVAL; /* * Find expired timers and set the new timer deadline; check the IRQ * status to determine if the free-running counter overflowed. Note * since each tick is greater than 1us and events can be set in * increments of 1us, in order to find expired timers we have to * check two conditions: the current time is exactly the next event * time, or this tick just caused us to pass the next event time. */ if (time_us == next_event_time || (time_us-TICK_INTERVAL) == (next_event_time & ~TICK_INTERVAL_MASK)) process_timers(0); else if (time_us == 0) process_timers(1); } DECLARE_IRQ(IT83XX_IRQ_TMR_B0, __hw_clock_source_irq, 1); static void setup_gpio(void) { /* TMB0 enabled */ IT83XX_GPIO_GRC2 |= 0x04; /* Pin muxing (TMB0) */ IT83XX_GPIO_GPCRF0 = 0x00; } static void hw_timer_enable_int(void) { /* clear interrupt status */ task_clear_pending_irq(IT83XX_IRQ_TMR_B0); /* enable interrupt B0 */ task_enable_irq(IT83XX_IRQ_TMR_B0); } int __hw_clock_source_init(uint32_t start_t) { __hw_clock_source_set(start_t); /* GPIO module should do this. */ setup_gpio(); #if PLL_CLOCK == 48000000 /* Set prescaler divider value (PRSC0 = /8). */ IT83XX_TMR_PRSC = 0x04; /* Tim B: 8 bit pulse mode, 8MHz clock. */ IT83XX_TMR_GCSMS = 0x01; #else #error "Support only for PLL clock speed of 48MHz." #endif /* Set timer B to use PRSC0. */ IT83XX_TMR_CCGSR = 0x00; /* * Set the 8-bit cycle time, duty time for timer B. Note 0 < DCR < CTR * in order for timer interrupt to properly fire when cycle time is * reached. */ IT83XX_TMR_CTR_B0 = TICK_INTERVAL - 1; IT83XX_TMR_DCR_B0 = 0x01; /* Enable the cycle time interrupt for timer B0. */ IT83XX_TMR_TMRIE |= 0x10; hw_timer_enable_int(); /* Enable TMR clock counter. */ IT83XX_TMR_TMRCE |= 0x02; return IT83XX_IRQ_TMR_B0; } void udelay(unsigned us) { /* * When WNCKR register is set, the CPU pauses until a low to * high transition on an internal 65kHz clock (~15.25us). We need to * make sure though that we don't ever delay less than the requested * amount, so we always have to add an extra wait. * * TODO: This code has a few limitations, the math isn't exact so * the larger the delay the farther off it will be, it uses a divide, * and the resolution is only about 15us. */ int waits = us*4/61 + 1; while (waits-- >= 0) IT83XX_GCTRL_WNCKR = 0; }