/* Copyright 2017 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* LPC module for MCHP MEC family */ #include "common.h" #include "acpi.h" #include "console.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "keyboard_protocol.h" #include "lpc.h" #include "lpc_chip.h" #include "espi.h" #include "port80.h" #include "registers.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" #include "chipset.h" #include "tfdp_chip.h" /* Console output macros */ #ifdef CONFIG_MCHP_DEBUG_LPC #define CPUTS(outstr) cputs(CC_LPC, outstr) #define CPRINTS(format, args...) cprints(CC_LPC, format, ## args) #else #define CPUTS(...) #define CPRINTS(...) #endif static uint8_t mem_mapped[0x200] __attribute__((section(".bss.big_align"))); static struct host_packet lpc_packet; static struct host_cmd_handler_args host_cmd_args; static uint8_t host_cmd_flags; /* Flags from host command */ static uint8_t params_copy[EC_LPC_HOST_PACKET_SIZE] __aligned(4); static int init_done; static struct ec_lpc_host_args * const lpc_host_args = (struct ec_lpc_host_args *)mem_mapped; #ifdef CONFIG_BOARD_ID_CMD_ACPI_EC1 static uint8_t custom_acpi_cmd; static uint8_t custom_acpi_ec2os_cnt; static uint8_t custom_apci_ec2os[4]; #endif static void keyboard_irq_assert(void) { #ifdef CONFIG_KEYBOARD_IRQ_GPIO /* * Enforce signal-high for long enough for the signal to be * pulled high by the external pull up resistor. This ensures the * host will see the following falling edge, regardless of the * line state before this function call. */ gpio_set_level(CONFIG_KEYBOARD_IRQ_GPIO, 1); udelay(4); /* Generate a falling edge */ gpio_set_level(CONFIG_KEYBOARD_IRQ_GPIO, 0); udelay(4); /* Set signal high, now that we've generated the edge */ gpio_set_level(CONFIG_KEYBOARD_IRQ_GPIO, 1); #else /* * SERIRQ is automatically sent by KBC */ #endif } /** * Generate SMI pulse to the host chipset via GPIO. * * If the x86 is in S0, SMI# is sampled at 33MHz, so minimum pulse length * is 60 ns. If the x86 is in S3, SMI# is sampled at 32.768KHz, so we need * pulse length >61us. Both are short enough and events are infrequent, * so just delay for 65 us. */ static void lpc_generate_smi(void) { CPUTS("LPC Pulse SMI"); #ifdef CONFIG_HOSTCMD_ESPI /* eSPI: pulse SMI# Virtual Wire low */ espi_vw_pulse_wire(VW_SMI_L, 0); #else gpio_set_level(GPIO_PCH_SMI_L, 0); udelay(65); gpio_set_level(GPIO_PCH_SMI_L, 1); #endif } static void lpc_generate_sci(void) { CPUTS("LPC Pulse SCI"); #ifdef CONFIG_SCI_GPIO gpio_set_level(CONFIG_SCI_GPIO, 0); udelay(65); gpio_set_level(CONFIG_SCI_GPIO, 1); #else #ifdef CONFIG_HOSTCMD_ESPI espi_vw_pulse_wire(VW_SCI_L, 0); #else MCHP_ACPI_PM_STS |= 1; udelay(65); MCHP_ACPI_PM_STS &= ~1; #endif #endif } /** * Update the level-sensitive wake signal to the AP. * * @param wake_events Currently asserted wake events */ static void lpc_update_wake(host_event_t wake_events) { /* * Mask off power button event, since the AP gets that * through a separate dedicated GPIO. */ wake_events &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_POWER_BUTTON); #ifdef CONFIG_HOSTCMD_ESPI espi_vw_set_wire(VW_WAKE_L, !wake_events); #else /* Signal is asserted low when wake events is non-zero */ gpio_set_level(GPIO_PCH_WAKE_L, !wake_events); #endif } static uint8_t *lpc_get_hostcmd_data_range(void) { return mem_mapped; } /** * Update the host event status. * * Sends a pulse if masked event status becomes non-zero: * - SMI pulse via PCH_SMI_L GPIO * - SCI pulse via PCH_SCI_L GPIO */ void lpc_update_host_event_status(void) { int need_sci = 0; int need_smi = 0; CPUTS("LPC update_host_event_status"); if (!init_done) return; /* Disable LPC interrupt while updating status register */ task_disable_irq(MCHP_IRQ_ACPIEC0_IBF); if (lpc_get_host_events_by_type(LPC_HOST_EVENT_SMI)) { /* Only generate SMI for first event */ if (!(MCHP_ACPI_EC_STATUS(0) & EC_LPC_STATUS_SMI_PENDING)) need_smi = 1; MCHP_ACPI_EC_STATUS(0) |= EC_LPC_STATUS_SMI_PENDING; } else { MCHP_ACPI_EC_STATUS(0) &= ~EC_LPC_STATUS_SMI_PENDING; } if (lpc_get_host_events_by_type(LPC_HOST_EVENT_SCI)) { /* Generate SCI for every event */ need_sci = 1; MCHP_ACPI_EC_STATUS(0) |= EC_LPC_STATUS_SCI_PENDING; } else { MCHP_ACPI_EC_STATUS(0) &= ~EC_LPC_STATUS_SCI_PENDING; } /* Copy host events to mapped memory */ *(uint32_t *)host_get_memmap(EC_MEMMAP_HOST_EVENTS) = lpc_get_host_events(); task_enable_irq(MCHP_IRQ_ACPIEC0_IBF); /* Process the wake events. */ lpc_update_wake(lpc_get_host_events_by_type(LPC_HOST_EVENT_WAKE)); /* Send pulse on SMI signal if needed */ if (need_smi) lpc_generate_smi(); /* ACPI 5.0-12.6.1: Generate SCI for SCI_EVT=1. */ if (need_sci) lpc_generate_sci(); } static void lpc_send_response(struct host_cmd_handler_args *args) { uint8_t *out; int size = args->response_size; int csum; int i; /* Ignore in-progress on LPC since interface is synchronous anyway */ if (args->result == EC_RES_IN_PROGRESS) return; /* Handle negative size */ if (size < 0) { args->result = EC_RES_INVALID_RESPONSE; size = 0; } /* New-style response */ lpc_host_args->flags = (host_cmd_flags & ~EC_HOST_ARGS_FLAG_FROM_HOST) | EC_HOST_ARGS_FLAG_TO_HOST; lpc_host_args->data_size = size; csum = args->command + lpc_host_args->flags + lpc_host_args->command_version + lpc_host_args->data_size; for (i = 0, out = (uint8_t *)args->response; i < size; i++, out++) csum += *out; lpc_host_args->checksum = (uint8_t)csum; /* Fail if response doesn't fit in the parameter buffer */ if (size > EC_PROTO2_MAX_PARAM_SIZE) args->result = EC_RES_INVALID_RESPONSE; /* Write result to the data byte. */ MCHP_ACPI_EC_EC2OS(1, 0) = args->result; /* * Clear processing flag in hardware and * sticky status in interrupt aggregator. */ MCHP_ACPI_EC_STATUS(1) &= ~EC_LPC_STATUS_PROCESSING; MCHP_INT_SOURCE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_IBF_GIRQ_BIT(1); } static void lpc_send_response_packet(struct host_packet *pkt) { /* Ignore in-progress on LPC since interface is * synchronous anyway */ if (pkt->driver_result == EC_RES_IN_PROGRESS) { /* CPRINTS("LPC EC_RES_IN_PROGRESS"); */ return; } CPRINTS("LPC Set EC2OS(1,0)=0x%02x", pkt->driver_result); /* Write result to the data byte. */ MCHP_ACPI_EC_EC2OS(1, 0) = pkt->driver_result; /* Clear the busy bit, so the host knows the EC is done. */ MCHP_ACPI_EC_STATUS(1) &= ~EC_LPC_STATUS_PROCESSING; MCHP_INT_SOURCE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_IBF_GIRQ_BIT(1); } uint8_t *lpc_get_memmap_range(void) { return mem_mapped + 0x100; } void lpc_mem_mapped_init(void) { /* We support LPC arguments and version 3 protocol */ *(lpc_get_memmap_range() + EC_MEMMAP_HOST_CMD_FLAGS) = EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED | EC_HOST_CMD_FLAG_VERSION_3; } const int acpi_ec_pcr_slp[] = { MCHP_PCR_ACPI_EC0, MCHP_PCR_ACPI_EC1, MCHP_PCR_ACPI_EC2, MCHP_PCR_ACPI_EC3, #ifndef CHIP_FAMILY_MEC152X MCHP_PCR_ACPI_EC4, #endif }; BUILD_ASSERT(ARRAY_SIZE(acpi_ec_pcr_slp) == MCHP_ACPI_EC_INSTANCES); const int acpi_ec_nvic_ibf[] = { MCHP_IRQ_ACPIEC0_IBF, MCHP_IRQ_ACPIEC1_IBF, MCHP_IRQ_ACPIEC2_IBF, MCHP_IRQ_ACPIEC3_IBF, #ifndef CHIP_FAMILY_MEC152X MCHP_IRQ_ACPIEC4_IBF, #endif }; BUILD_ASSERT(ARRAY_SIZE(acpi_ec_nvic_ibf) == MCHP_ACPI_EC_INSTANCES); #ifdef CONFIG_HOSTCMD_ESPI const int acpi_ec_espi_bar_id[] = { MCHP_ESPI_IO_BAR_ID_ACPI_EC0, MCHP_ESPI_IO_BAR_ID_ACPI_EC1, MCHP_ESPI_IO_BAR_ID_ACPI_EC2, MCHP_ESPI_IO_BAR_ID_ACPI_EC3, #ifndef CHIP_FAMILY_MEC152X MCHP_ESPI_IO_BAR_ID_ACPI_EC4, #endif }; BUILD_ASSERT(ARRAY_SIZE(acpi_ec_espi_bar_id) == MCHP_ACPI_EC_INSTANCES); #endif void chip_acpi_ec_config(int instance, uint32_t io_base, uint8_t mask) { if (instance >= MCHP_ACPI_EC_INSTANCES) { CPUTS("ACPI EC CFG invalid"); return; } MCHP_PCR_SLP_DIS_DEV(acpi_ec_pcr_slp[instance]); #ifdef CONFIG_HOSTCMD_ESPI MCHP_ESPI_IO_BAR_CTL_MASK(acpi_ec_espi_bar_id[instance]) = mask; MCHP_ESPI_IO_BAR(acpi_ec_espi_bar_id[instance]) = (io_base << 16) + 0x01ul; #else MCHP_LPC_ACPI_EC_BAR(instance) = (io_base << 16) + (1ul << 15) + mask; #endif MCHP_ACPI_EC_STATUS(instance) &= ~EC_LPC_STATUS_PROCESSING; MCHP_INT_ENABLE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_IBF_GIRQ_BIT(instance); task_enable_irq(acpi_ec_nvic_ibf[instance]); } /* * 8042EM hardware decodes with fixed mask of 0x04 * Example: io_base == 0x60 -> decodes 0x60/0x64 * Enable both IBF and OBE interrupts. */ void chip_8042_config(uint32_t io_base) { MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_8042); #ifdef CONFIG_HOSTCMD_ESPI MCHP_ESPI_IO_BAR_CTL_MASK(MCHP_ESPI_IO_BAR_ID_8042) = 0x04; MCHP_ESPI_IO_BAR(MCHP_ESPI_IO_BAR_ID_8042) = (io_base << 16) + 0x01ul; #else /* Set up 8042 interface at 0x60/0x64 */ MCHP_LPC_8042_BAR = (io_base << 16) + (1ul << 15); #endif /* Set up indication of Auxiliary status */ MCHP_8042_KB_CTRL |= BIT(7); MCHP_8042_ACT |= 1; MCHP_INT_ENABLE(MCHP_8042_GIRQ) = MCHP_8042_OBE_GIRQ_BIT + MCHP_8042_IBF_GIRQ_BIT; task_enable_irq(MCHP_IRQ_8042EM_IBF); task_enable_irq(MCHP_IRQ_8042EM_OBE); #ifndef CONFIG_KEYBOARD_IRQ_GPIO /* Set up SERIRQ for keyboard */ MCHP_8042_KB_CTRL |= BIT(5); #ifdef CONFIG_HOSTCMD_ESPI /* Delivery 8042 keyboard interrupt as IRQ1 using eSPI SERIRQ */ MCHP_ESPI_IO_SERIRQ_REG(MCHP_ESPI_SIRQ_8042_KB) = 1; #else MCHP_LPC_SIRQ(1) = 0x01; #endif #endif } /* * Access data RAM * MCHP EMI Base address register = physical address of buffer * in SRAM. EMI hardware adds 16-bit offset Host programs into * EC_Address_LSB/MSB registers. * Limit EMI read / write range. First 256 bytes are RW for host * commands. Second 256 bytes are RO for memory-mapped data. * Hardware decodes a fixed 16 byte IO range. */ void chip_emi0_config(uint32_t io_base) { #ifdef CONFIG_HOSTCMD_ESPI MCHP_ESPI_IO_BAR_CTL_MASK(MCHP_ESPI_IO_BAR_ID_EMI0) = 0x0F; MCHP_ESPI_IO_BAR(MCHP_ESPI_IO_BAR_ID_EMI0) = (io_base << 16) + 0x01ul; #else MCHP_LPC_EMI0_BAR = (io_base << 16) + (1ul << 15); #endif MCHP_EMI_MBA0(0) = (uint32_t)mem_mapped; MCHP_EMI_MRL0(0) = 0x200; MCHP_EMI_MWL0(0) = 0x100; MCHP_INT_ENABLE(MCHP_EMI_GIRQ) = MCHP_EMI_GIRQ_BIT(0); task_enable_irq(MCHP_IRQ_EMI0); } /* Setup Port 80 Debug Hardware ports. * First instance for I/O 80h only. * Clear FIFO's and time stamp. * Set FIFO interrupt threshold to maximum of 14 bytes. */ #if defined(CHIP_FAMILY_MEC172X) void chip_port80_config(uint32_t io_base) { MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_BDP0); /* reset, configure, and enable */ MCHP_BDP0_CONFIG = MCHP_BDP_CFG_SRST; MCHP_BDP0_CONFIG = MCHP_BDP_CFG_FIFO_THRH_28; MCHP_BDP0_INTR_EN = MCHP_BDP_IEN_THRH; MCHP_BDP0_ACTV = 1; MCHP_INT_SOURCE(15) = MCHP_INT15_BDP0; MCHP_INT_ENABLE(15) = MCHP_INT15_BDP0; task_enable_irq(MCHP_IRQ_BDP0); /* Last: Enable Host access via eSPI IO BAR */ MCHP_ESPI_IO_BAR_CTL_MASK(MCHP_ESPI_IO_BAR_BDP0) = 0x00; MCHP_ESPI_IO_BAR(MCHP_ESPI_IO_BAR_BDP0) = (io_base << 16) + 0x01ul; } #else void chip_port80_config(uint32_t io_base) { MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_P80CAP0); MCHP_P80_CFG(0) = MCHP_P80_FLUSH_FIFO_WO + MCHP_P80_RESET_TIMESTAMP_WO; #ifdef CONFIG_HOSTCMD_ESPI MCHP_ESPI_IO_BAR_CTL_MASK(MCHP_ESPI_IO_BAR_P80_0) = 0x00; MCHP_ESPI_IO_BAR(MCHP_ESPI_IO_BAR_P80_0) = (io_base << 16) + 0x01ul; #else MCHP_LPC_P80DBG0_BAR = (io_base << 16) + (1ul << 15); #endif MCHP_P80_CFG(0) = MCHP_P80_FIFO_THRHOLD_14 + MCHP_P80_TIMEBASE_1500KHZ + MCHP_P80_TIMER_ENABLE; MCHP_P80_ACTIVATE(0) = 1; MCHP_INT_SOURCE(15) = MCHP_P80_GIRQ_BIT(0); MCHP_INT_ENABLE(15) = MCHP_P80_GIRQ_BIT(0); task_enable_irq(MCHP_IRQ_PORT80DBG0); } #endif #ifdef CONFIG_MCHP_DEBUG_LPC static void chip_lpc_iobar_debug(void) { CPRINTS("LPC ACPI EC0 IO BAR = 0x%08x", MCHP_LPC_ACPI_EC_BAR(0)); CPRINTS("LPC ACPI EC1 IO BAR = 0x%08x", MCHP_LPC_ACPI_EC_BAR(1)); CPRINTS("LPC 8042EM IO BAR = 0x%08x", MCHP_LPC_8042_BAR); CPRINTS("LPC EMI0 IO BAR = 0x%08x", MCHP_LPC_EMI0_BAR); CPRINTS("LPC Port80Dbg0 IO BAR = 0x%08x", MCHP_LPC_P80DBG0_BAR); } #endif /* * Most registers in LPC module are reset when the host is off. * We need to set up LPC again when the host is starting up. * MCHP LRESET# can be one of two pins * GPIO_0052 Function 2 * GPIO_0064 Function 1 * Use GPIO interrupt to detect LRESET# changes. * Use GPIO_0064 for LRESET#. Must update board/board_name/gpio.inc * * For eSPI PLATFORM_RESET# virtual wire is used as LRESET# * */ #ifndef CONFIG_HOSTCMD_ESPI static void setup_lpc(void) { MCHP_LPC_CFG_BAR |= (1ul << 15); /* Set up ACPI0 for 0x62/0x66 */ chip_acpi_ec_config(0, 0x62, 0x04); /* Set up ACPI1 for 0x200 - 0x207 */ chip_acpi_ec_config(1, 0x200, 0x07); /* Set up 8042 interface at 0x60/0x64 */ chip_8042_config(0x60); #ifndef CONFIG_KEYBOARD_IRQ_GPIO /* Set up SERIRQ for keyboard */ MCHP_8042_KB_CTRL |= BIT(5); MCHP_LPC_SIRQ(1) = 0x01; #endif /* EMI0 at IO 0x800 */ chip_emi0_config(0x800); chip_port80_config(0x80); lpc_mem_mapped_init(); /* Activate LPC interface */ MCHP_LPC_ACT |= 1; /* Sufficiently initialized */ init_done = 1; /* Update host events now that we can copy them to memmap */ lpc_update_host_event_status(); #ifdef CONFIG_MCHP_DEBUG_LPC chip_lpc_iobar_debug(); #endif } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, setup_lpc, HOOK_PRIO_FIRST); #endif static void lpc_init(void) { CPUTS("LPC HOOK_INIT"); /* Initialize host args and memory map to all zero */ memset(lpc_host_args, 0, sizeof(*lpc_host_args)); memset(lpc_get_memmap_range(), 0, EC_MEMMAP_SIZE); /* * Clear PCR sleep enables for peripherals we are using for * both LPC and eSPI. * Global Configuration, ACPI EC0/1, 8042 Keyboard controller. * NOTE: EMI doesn't have a sleep enable. */ MCHP_PCR_SLP_DIS_DEV_MASK(2, MCHP_PCR_SLP_EN2_GCFG + MCHP_PCR_SLP_EN2_ACPI_EC0 + MCHP_PCR_SLP_EN2_ACPI_EC0 + MCHP_PCR_SLP_EN2_MIF8042); #ifdef CONFIG_HOSTCMD_ESPI espi_init(); #else /* Clear PCR LPC sleep enable */ MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_LPC); /* configure pins */ gpio_config_module(MODULE_LPC, 1); /* * MCHP LRESET# interrupt is GPIO interrupt * and configured by GPIO table in board level gpio.inc * Refer to lpcrst_interrupt() in this file. */ gpio_enable_interrupt(GPIO_PCH_PLTRST_L); /* * b[8]=1(LRESET# is platform reset), b[0]=0 VCC_PWRGD is * asserted when LRESET# is 1(inactive) */ MCHP_PCR_PWR_RST_CTL = 0x100ul; /* * Allow LPC sleep if Host CLKRUN# signals * clock stop and there are no pending SERIRQ * or LPC DMA. */ MCHP_LPC_EC_CLK_CTRL = (MCHP_LPC_EC_CLK_CTRL & ~(0x03ul)) | 0x01ul; setup_lpc(); #endif } /* * Set priority to higher than default; this way LPC memory mapped * data is ready before other inits try to initialize their * memmap data. */ DECLARE_HOOK(HOOK_INIT, lpc_init, HOOK_PRIO_INIT_LPC); #ifdef CONFIG_CHIPSET_RESET_HOOK static void lpc_chipset_reset(void) { hook_notify(HOOK_CHIPSET_RESET); } DECLARE_DEFERRED(lpc_chipset_reset); #endif void lpc_set_init_done(int val) { init_done = val; } /* * MCHP MCHP family allows selecting one of two GPIO pins alternate * functions as LRESET#. * LRESET# can be monitored as bit[1](read-only) of the * LPC Bus Monitor register. NOTE: Bus Monitor is synchronized with * LPC clock. We have observed APL configurations where LRESET# * changes while LPC clock is not running! * bit[1]==0 -> LRESET# is high * bit[1]==1 -> LRESET# is low (active) * LRESET# active causes the EC to activate internal signal RESET_HOST. * MCHP_PCR_PWR_RST_STS bit[3](read-only) = RESET_HOST_STATUS = * 0 = Reset active * 1 = Reset not active * MCHP is different than MEC1322 in that LRESET# is not connected * to a separate interrupt source. * If using LPC the board design must select on of the two GPIO pins * dedicated for LRESET# and this pin must be configured in the * board level gpio.inc */ void lpcrst_interrupt(enum gpio_signal signal) { #ifndef CONFIG_HOSTCMD_ESPI /* Initialize LPC module when LRESET# is de-asserted */ if (!lpc_get_pltrst_asserted()) { setup_lpc(); } else { /* Store port 80 reset event */ port_80_write(PORT_80_EVENT_RESET); #ifdef CONFIG_CHIPSET_RESET_HOOK /* Notify HOOK_CHIPSET_RESET */ hook_call_deferred(&lpc_chipset_reset_data, MSEC); #endif } #ifdef CONFIG_MCHP_DEBUG_LPC CPRINTS("LPC RESET# %sasserted", lpc_get_pltrst_asserted() ? "" : "de"); #endif #endif } /* * TODO - Is this only for debug of EMI host communication * or logging of EMI host communication? We don't observe * this ISR so Host is not writing to MCHP_EMI_H2E_MBX(0). */ void emi0_interrupt(void) { uint8_t h2e; h2e = MCHP_EMI_H2E_MBX(0); CPRINTS("LPC Host 0x%02x -> EMI0 H2E(0)", h2e); port_80_write(h2e); } DECLARE_IRQ(MCHP_IRQ_EMI0, emi0_interrupt, 1); /* * ISR empties BIOS Debug 0 FIFO and * writes data to circular buffer. How can we be * sure this routine can read the last Port 80h byte? * MEC172x BDP capture data is different. It returns a * 16-bit value where bits [7:0] are the data and bits [15:7] * are flags indicating if the data is part of a multi-byte * write sequence by the host and read-only FIFO status bits. * The capture HW in previous chips included an optional time * stamp in bits[31:8] of the data register. */ int port_80_read(void) { int data = PORT_80_IGNORE; #if defined(CHIP_FAMILY_MEC172X) if (MCHP_BDP0_STATUS & MCHP_BDP_STATUS_NOT_EMPTY) data = MCHP_BDP0_DATTR & 0xFFU; #else if (MCHP_P80_STS(0) & MCHP_P80_STS_NOT_EMPTY) data = MCHP_P80_CAP(0) & 0xFF; #endif return data; } #ifdef CONFIG_BOARD_ID_CMD_ACPI_EC1 /* * Handle custom ACPI EC0 commands. * Some chipset CoreBoot will send read board ID command expecting * a two byte response. */ static int acpi_ec0_custom(int is_cmd, uint8_t value, uint8_t *resultptr) { int rval; rval = 0; custom_acpi_ec2os_cnt = 0; *resultptr = 0x00; if (is_cmd && (value == 0x0d)) { MCHP_INT_SOURCE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_OBE_GIRQ_BIT(0); /* Write two bytes sequence 0xC2, 0x04 to Host */ if (MCHP_ACPI_EC_BYTE_CTL(0) & 0x01) { /* Host enabled 4-byte mode */ MCHP_ACPI_EC_EC2OS(0, 0) = 0x02; MCHP_ACPI_EC_EC2OS(0, 1) = 0x04; MCHP_ACPI_EC_EC2OS(0, 2) = 0x00; /* Sets OBF */ MCHP_ACPI_EC_EC2OS(0, 3) = 0x00; } else { /* single byte mode */ *resultptr = 0x02; custom_acpi_ec2os_cnt = 1; custom_apci_ec2os[0] = 0x04; MCHP_ACPI_EC_EC2OS(0, 0) = 0x02; MCHP_INT_ENABLE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_OBE_GIRQ_BIT(0); task_enable_irq(MCHP_IRQ_ACPIEC0_OBE); } custom_acpi_cmd = 0; rval = 1; } return rval; } #endif void acpi_0_interrupt(void) { uint8_t value, result, is_cmd; is_cmd = MCHP_ACPI_EC_STATUS(0); /* Set the bust bi */ MCHP_ACPI_EC_STATUS(0) |= EC_LPC_STATUS_PROCESSING; result = MCHP_ACPI_EC_BYTE_CTL(0); /* Read command/data; this clears the FRMH bit. */ value = MCHP_ACPI_EC_OS2EC(0, 0); is_cmd &= EC_LPC_STATUS_LAST_CMD; /* Handle whatever this was. */ result = 0; if (acpi_ap_to_ec(is_cmd, value, &result)) MCHP_ACPI_EC_EC2OS(0, 0) = result; #ifdef CONFIG_BOARD_ID_CMD_ACPI_EC1 else acpi_ec0_custom(is_cmd, value, &result); #endif /* Clear the busy bit */ MCHP_ACPI_EC_STATUS(0) &= ~EC_LPC_STATUS_PROCESSING; /* Clear R/W1C status bit in Aggregator */ MCHP_INT_SOURCE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_IBF_GIRQ_BIT(0); /* * ACPI 5.0-12.6.1: Generate SCI for Input Buffer Empty / * Output Buffer Full condition on the kernel channel/ */ lpc_generate_sci(); } DECLARE_IRQ(MCHP_IRQ_ACPIEC0_IBF, acpi_0_interrupt, 1); #ifdef CONFIG_BOARD_ID_CMD_ACPI_EC1 /* * ACPI EC0 output buffer empty ISR. * Used to handle custom ACPI EC0 command requiring * two byte response. */ void acpi_0_obe_isr(void) { uint8_t sts, data; MCHP_INT_SOURCE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_OBE_GIRQ_BIT(0); sts = MCHP_ACPI_EC_STATUS(0); data = MCHP_ACPI_EC_BYTE_CTL(0); data = sts; if (custom_acpi_ec2os_cnt) { custom_acpi_ec2os_cnt--; data = custom_apci_ec2os[custom_acpi_ec2os_cnt]; } if (custom_acpi_ec2os_cnt == 0) { /* was last byte? */ MCHP_INT_DISABLE(MCHP_ACPI_EC_GIRQ) = MCHP_ACPI_EC_OBE_GIRQ_BIT(0); } lpc_generate_sci(); } DECLARE_IRQ(MCHP_IRQ_ACPIEC0_OBE, acpi_0_obe_isr, 1); #endif void acpi_1_interrupt(void) { uint8_t st = MCHP_ACPI_EC_STATUS(1); if (!(st & EC_LPC_STATUS_FROM_HOST) || !(st & EC_LPC_STATUS_LAST_CMD)) return; /* Set the busy bit */ MCHP_ACPI_EC_STATUS(1) |= EC_LPC_STATUS_PROCESSING; /* * Read the command byte. This clears the FRMH bit in * the status byte. */ host_cmd_args.command = MCHP_ACPI_EC_OS2EC(1, 0); host_cmd_args.result = EC_RES_SUCCESS; host_cmd_args.send_response = lpc_send_response; host_cmd_flags = lpc_host_args->flags; /* We only support new style command (v3) now */ if (host_cmd_args.command == EC_COMMAND_PROTOCOL_3) { lpc_packet.send_response = lpc_send_response_packet; lpc_packet.request = (const void *)lpc_get_hostcmd_data_range(); lpc_packet.request_temp = params_copy; lpc_packet.request_max = sizeof(params_copy); /* Don't know the request size so * pass in the entire buffer */ lpc_packet.request_size = EC_LPC_HOST_PACKET_SIZE; lpc_packet.response = (void *)lpc_get_hostcmd_data_range(); lpc_packet.response_max = EC_LPC_HOST_PACKET_SIZE; lpc_packet.response_size = 0; lpc_packet.driver_result = EC_RES_SUCCESS; host_packet_receive(&lpc_packet); } else { /* Old style command unsupported */ host_cmd_args.result = EC_RES_INVALID_COMMAND; /* Hand off to host command handler */ host_command_received(&host_cmd_args); } } DECLARE_IRQ(MCHP_IRQ_ACPIEC1_IBF, acpi_1_interrupt, 1); #ifdef HAS_TASK_KEYPROTO /* * Reading data out of input buffer clears read-only status * in 8042EM. Next, we must clear aggregator status. */ void kb_ibf_interrupt(void) { if (lpc_keyboard_input_pending()) keyboard_host_write(MCHP_8042_H2E, MCHP_8042_STS & BIT(3)); MCHP_INT_SOURCE(MCHP_8042_GIRQ) = MCHP_8042_IBF_GIRQ_BIT; task_wake(TASK_ID_KEYPROTO); } DECLARE_IRQ(MCHP_IRQ_8042EM_IBF, kb_ibf_interrupt, 1); /* * Interrupt generated when Host reads data byte from 8042EM * output buffer. The 8042EM STATUS.OBF bit will clear when the * Host reads the data and assert its OBE signal to interrupt * aggregator. Clear aggregator 8042EM OBE R/WC status bit before * invoking task. */ void kb_obe_interrupt(void) { MCHP_INT_SOURCE(MCHP_8042_GIRQ) = MCHP_8042_OBE_GIRQ_BIT; task_wake(TASK_ID_KEYPROTO); } DECLARE_IRQ(MCHP_IRQ_8042EM_OBE, kb_obe_interrupt, 1); #endif /* * Bit 0 of 8042EM STATUS register is OBF meaning EC has written * data to EC2HOST data register. OBF is cleared when the host * reads the data. */ int lpc_keyboard_has_char(void) { return (MCHP_8042_STS & BIT(0)) ? 1 : 0; } int lpc_keyboard_input_pending(void) { return (MCHP_8042_STS & BIT(1)) ? 1 : 0; } /* * called from common/keyboard_8042.c */ void lpc_keyboard_put_char(uint8_t chr, int send_irq) { MCHP_8042_E2H = chr; if (send_irq) keyboard_irq_assert(); } /* * Read 8042 register and write to read-only register * insuring compiler does not optimize out the read. */ void lpc_keyboard_clear_buffer(void) { MCHP_PCR_CHIP_OSC_ID = MCHP_8042_OBF_CLR; } void lpc_keyboard_resume_irq(void) { if (lpc_keyboard_has_char()) keyboard_irq_assert(); } void lpc_set_acpi_status_mask(uint8_t mask) { MCHP_ACPI_EC_STATUS(0) |= mask; } void lpc_clear_acpi_status_mask(uint8_t mask) { MCHP_ACPI_EC_STATUS(0) &= ~mask; } /* * Read hardware to determine state of platform reset signal. * LPC issue: Observed APL chipset changing LRESET# while LPC * clock is not running. This violates original LPC specification. * Unable to find information in APL chipset documentation * stating APL can change LRESET# with LPC clock not running. * Could this be a CoreBoot issue during CB LPC configuration? * We work-around this issue by reading the GPIO state. */ int lpc_get_pltrst_asserted(void) { #ifdef CONFIG_HOSTCMD_ESPI /* * eSPI PLTRST# a VWire or side-band signal * Controlled by CONFIG_HOSTCMD_ESPI */ return !espi_vw_get_wire(VW_PLTRST_L); #else /* returns 1 if LRESET# pin is asserted(low) else 0 */ #ifdef CONFIG_CHIPSET_APL_GLK /* Use GPIO */ return !gpio_get_level(GPIO_PCH_PLTRST_L); #else /* assumes LPC clock is running when host changes LRESET# */ return (MCHP_LPC_BUS_MONITOR & (1<<1)) ? 1 : 0; #endif #endif } /* Enable LPC ACPI-EC0 interrupts */ void lpc_enable_acpi_interrupts(void) { task_enable_irq(MCHP_IRQ_ACPIEC0_IBF); } /* Disable LPC ACPI-EC0 interrupts */ void lpc_disable_acpi_interrupts(void) { task_disable_irq(MCHP_IRQ_ACPIEC0_IBF); } /* On boards without a host, this command is used to set up LPC */ static int lpc_command_init(int argc, char **argv) { lpc_init(); return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(lpcinit, lpc_command_init, NULL, NULL); /* Get protocol information */ static enum ec_status lpc_get_protocol_info(struct host_cmd_handler_args *args) { struct ec_response_get_protocol_info *r = args->response; CPUTS("MEC1701 Handler EC_CMD_GET_PROTOCOL_INFO"); memset(r, 0, sizeof(*r)); r->protocol_versions = BIT(3); r->max_request_packet_size = EC_LPC_HOST_PACKET_SIZE; r->max_response_packet_size = EC_LPC_HOST_PACKET_SIZE; r->flags = 0; args->response_size = sizeof(*r); return EC_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_GET_PROTOCOL_INFO, lpc_get_protocol_info, EC_VER_MASK(0)); #ifdef CONFIG_MCHP_DEBUG_LPC static int command_lpc(int argc, char **argv) { if (argc == 1) return EC_ERROR_PARAM1; if (!strcasecmp(argv[1], "sci")) lpc_generate_sci(); else if (!strcasecmp(argv[1], "smi")) lpc_generate_smi(); else if (!strcasecmp(argv[1], "wake")) lpc_update_wake(-1); else return EC_ERROR_PARAM1; return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(lpc, command_lpc, "[sci|smi|wake]", "Trigger SCI/SMI"); #endif