/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "chipset.h" #include "clock.h" #include "common.h" #include "console.h" #include "dma.h" #include "gpio.h" #include "hooks.h" #include "hwtimer.h" #include "i2c.h" #include "registers.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_I2C, outstr) #define CPRINTS(format, args...) cprints(CC_I2C, format, ## args) #define I2C_ERROR_FAILED_START EC_ERROR_INTERNAL_FIRST /* Transmit timeout in microseconds */ #define I2C_TX_TIMEOUT_MASTER (10 * MSEC) enum i2c_freq_khz { freq_100 = 100, freq_400 = 400, freq_1000 = 1000, }; struct i2c_timing { uint8_t scll; uint8_t sclh; uint8_t sdadel; uint8_t scldel; uint8_t presc; }; /* timing register values for supported input clks / i2c clk rates */ static const uint32_t busyloop_us[I2C_FREQ_COUNT] = { [I2C_FREQ_1000KHZ] = 16, /* Enough for 2 bytes */ [I2C_FREQ_400KHZ] = 40, /* Enough for 2 bytes */ [I2C_FREQ_100KHZ] = 0, /* No busy looping at 100kHz (bus is slow) */ }; /* * The following timing config values are given in Table 371 of TM0440 which * assumes an I2CCLK freq of 16 MHZ. I2CCLK is connected to HSI, with is @ * 16MHz. The TRM recommends using the STM32CubeMX tool to get more accurate * values. Note that the actual clock period is (scll + 1) + (schl + 1) + * internal detection delays for SCL being low/high. */ const struct i2c_timing i2c_timingr[I2C_FREQ_COUNT] = { [I2C_FREQ_1000KHZ] = { .scll = 4, .sclh = 2, .sdadel = 0, .scldel = 2, .presc = 0, }, [I2C_FREQ_400KHZ] = { .scll = 9, .sclh = 4, .sdadel = 2, .scldel = 3, .presc = 1, }, [I2C_FREQ_100KHZ] = { .scll = 19, .sclh = 15, .sdadel = 2, .scldel = 4, .presc = 3, }, }; /* * For G4, I2C1 and I2C2 are contiguous in address space, but I2C3 and I2C4 are * at different offsets. In order to make the driver code easier, the base * address for each port's register block is defined here and can be used in i2c * register read/write accesses. */ static const uint32_t i2c_regs_base[] = { STM32_I2C1_BASE, STM32_I2C2_BASE, STM32_I2C3_BASE, STM32_I2C4_BASE, }; /* I2C port state data */ struct i2c_port_data { uint32_t timeout_us; /* Transaction timeout, or 0 to use default */ enum i2c_freq freq; /* Port clock speed */ }; static struct i2c_port_data pdata[I2C_PORT_COUNT]; void i2c_set_timeout(int port, uint32_t timeout) { pdata[port].timeout_us = timeout ? timeout : I2C_TX_TIMEOUT_MASTER; } /** * Set i2c clock rate.. * * @param p I2C port struct */ static void i2c_set_timingr_port(const struct i2c_port_t *p) { int port = p->port; uint32_t base; int index; uint32_t timingr; ASSERT(port < I2C_PORT_COUNT); base = i2c_regs_base[port]; /* * To configure an I2C port frequency requires 5 values. scll, sclh, * sdadel, scldel, and presc. With these settings, the actual SCL period * (Tscl) is given by: * Tscl = Tsync1 + Tsync2 + [(scll+1) + (sclh+1)] * presc * Ti2clck * * Using HSI for i2cclk, so this is fixed @ 16MHz. The recommended * values for the 5 parameters are from the TRM for i2clck @ 16 MHZ. * Note that Tsyncx is a function of SCL rise/fall times and filtering * selected for the given I2C port. sdadel and scldel affect when data * is written or read relative to SCL edges. */ if (p->kbps == freq_100) { index = I2C_FREQ_100KHZ; } else if (p->kbps == freq_400) { index = I2C_FREQ_400KHZ; } else if (p->kbps == freq_400) { index = I2C_FREQ_1000KHZ; } else { index = I2C_FREQ_100KHZ; CPRINTS("stm32 i2c[p%d]: Invalid freq, setting 100Khz instead!", port); } /* Assemble write value for timingr register */ timingr = (i2c_timingr[index].scll << STM32_I2C_TIMINGR_SCLL_OFF) | (i2c_timingr[index].sclh << STM32_I2C_TIMINGR_SCLH_OFF) | (i2c_timingr[index].sdadel << STM32_I2C_TIMINGR_SDADEL_OFF) | (i2c_timingr[index].scldel << STM32_I2C_TIMINGR_SCLDEL_OFF) | (i2c_timingr[index].presc << STM32_I2C_TIMINGR_PRESC_OFF); /* Write timingr value */ STM32_I2C_TIMINGR(base) = timingr; /* Save freq lookup index for polling loop delay */ pdata[port].freq = index; } /** * Initialize on the specified I2C port. * * @param p the I2c port */ static void i2c_init_port(const struct i2c_port_t *p) { int port = p->port; uint32_t base; ASSERT(port < I2C_PORT_COUNT); base = i2c_regs_base[port]; /* * The I2C module clock can be derived from sysclk, hsi16, or pclk1. * CrosEC will typically have sysclk = pclk = cpuclk. hsi16 is fixed at * 16 Mhz and given that it's a known freq, the timing register values * can be obtained via table lookup. The I2C clock source is selected * via the I2CnSEL field for a given I2C port. * * I2CnSEL is a 2 bit field in same register for ports 0-2 (1-3 in * STM32 notation), but is in a different register for port 3. */ if (port < 3) { int clksel; int mask; int shift; shift = STM32_RCC_CCIPR_I2C1SEL_SHIFT + 2 * port; mask = STM32_RCC_CCIPR_I2CNSEL_MASK << shift; clksel = STM32_RCC_CCIPR; clksel &= ~mask; STM32_RCC_CCIPR = clksel | (STM32_RCC_CCIPR_I2CNSEL_HSI << shift); } else if (port == 3) { /* i2c4sel is bits 1:0, no shift required */ STM32_RCC_CCIPR2 &= ~STM32_RCC_CCIPR2_I2C4SEL_MASK; STM32_RCC_CCIPR2 |= STM32_RCC_CCIPR_I2CNSEL_HSI; } /* * Software reset for an I2C port is performed by clearing the PE bit in * that port's CR1 register. When this happens, SCL and SDA are * released, internal stame machines are reset, control/status bits are * also reset. The I2C block reset requires 3 APB cycles before setting * PE back to 1. This wait is ensured by the call fo i2c_set_freq_port. */ STM32_I2C_CR1(base) &= ~STM32_I2C_CR1_PE; /* Set up initial bus frequencies */ i2c_set_timingr_port(p); /* Enable the I2C port */ STM32_I2C_CR1(base) |= STM32_I2C_CR1_PE; /* Set up default timeout */ i2c_set_timeout(port, 0); } /*****************************************************************************/ /* Interface */ /** * Wait for ISR register to contain the specified mask. * * Returns EC_SUCCESS, EC_ERROR_TIMEOUT if timed out waiting, or * EC_ERROR_UNKNOWN if an error bit appeared in the status register. */ static int wait_isr(int port, int mask) { uint32_t start = __hw_clock_source_read(); uint32_t delta; uint32_t base; ASSERT(port < I2C_PORT_COUNT); base = i2c_regs_base[port]; do { int isr = STM32_I2C_ISR(base); /* Check for errors */ if (isr & (STM32_I2C_ISR_ARLO | STM32_I2C_ISR_BERR | STM32_I2C_ISR_NACK)) return EC_ERROR_UNKNOWN; /* Check for desired mask */ if ((isr & mask) == mask) return EC_SUCCESS; delta = __hw_clock_source_read() - start; /** * Depending on the bus speed, busy loop for a while before * sleeping and letting other things run. */ if (delta >= busyloop_us[pdata[port].freq]) usleep(100); } while (delta < pdata[port].timeout_us); return EC_ERROR_TIMEOUT; } /***************************************************************************** * Exported functions declared in i2c.h */ /* Perform an i2c transaction. */ int chip_i2c_xfer(const int port, const uint16_t slave_addr_flags, const uint8_t *out, int out_bytes, uint8_t *in, int in_bytes, int flags) { int addr_8bit = I2C_STRIP_FLAGS(slave_addr_flags) << 1; int rv = EC_SUCCESS; int i; int xfer_start = flags & I2C_XFER_START; int xfer_stop = flags & I2C_XFER_STOP; uint32_t base; ASSERT(port < I2C_PORT_COUNT); base = i2c_regs_base[port]; ASSERT(out || !out_bytes); ASSERT(in || !in_bytes); /* Clear status */ if (xfer_start) { STM32_I2C_ICR(base) = STM32_I2C_ICR_ALL; STM32_I2C_CR2(base) = 0; } if (out_bytes || !in_bytes) { /* * Configure the write transfer: if we are stopping then set * AUTOEND bit to automatically set STOP bit after NBYTES. * if we are not stopping, set RELOAD bit so that we can load * NBYTES again. if we are starting, then set START bit. */ STM32_I2C_CR2(base) = ((out_bytes & 0xFF) << 16) | addr_8bit | ((in_bytes == 0 && xfer_stop) ? STM32_I2C_CR2_AUTOEND : 0) | ((in_bytes == 0 && !xfer_stop) ? STM32_I2C_CR2_RELOAD : 0) | (xfer_start ? STM32_I2C_CR2_START : 0); for (i = 0; i < out_bytes; i++) { rv = wait_isr(port, STM32_I2C_ISR_TXIS); if (rv) goto xfer_exit; /* Write next data byte */ STM32_I2C_TXDR(base) = out[i]; } } if (in_bytes) { if (out_bytes) { /* wait for completion of the write */ rv = wait_isr(port, STM32_I2C_ISR_TC); if (rv) goto xfer_exit; } /* * Configure the read transfer: if we are stopping then set * AUTOEND bit to automatically set STOP bit after NBYTES. * if we are not stopping, set RELOAD bit so that we can load * NBYTES again. if we were just transmitting, we need to * set START bit to send (re)start and begin read transaction. */ STM32_I2C_CR2(base) = ((in_bytes & 0xFF) << 16) | STM32_I2C_CR2_RD_WRN | addr_8bit | (xfer_stop ? STM32_I2C_CR2_AUTOEND : 0) | (!xfer_stop ? STM32_I2C_CR2_RELOAD : 0) | (out_bytes || xfer_start ? STM32_I2C_CR2_START : 0); for (i = 0; i < in_bytes; i++) { /* Wait for receive buffer not empty */ rv = wait_isr(port, STM32_I2C_ISR_RXNE); if (rv) goto xfer_exit; in[i] = STM32_I2C_RXDR(base); } } /* * If we are stopping, then we already set AUTOEND and we should * wait for the stop bit to be transmitted. Otherwise, we set * the RELOAD bit and we should wait for transfer complete * reload (TCR). */ rv = wait_isr(port, xfer_stop ? STM32_I2C_ISR_STOP : STM32_I2C_ISR_TCR); if (rv) goto xfer_exit; xfer_exit: /* clear status */ if (xfer_stop) STM32_I2C_ICR(base) = STM32_I2C_ICR_ALL; /* On error, queue a stop condition */ if (rv) { /* queue a STOP condition */ STM32_I2C_CR2(base) |= STM32_I2C_CR2_STOP; /* wait for it to take effect */ /* Wait up to 100 us for bus idle */ for (i = 0; i < 10; i++) { if (!(STM32_I2C_ISR(base) & STM32_I2C_ISR_BUSY)) break; udelay(10); } /* * Allow bus to idle for at least one 100KHz clock = 10 us. * This allows slaves on the bus to detect bus-idle before * the next start condition. */ udelay(10); /* re-initialize the controller */ STM32_I2C_CR2(base) = 0; STM32_I2C_CR1(base) &= ~STM32_I2C_CR1_PE; udelay(10); STM32_I2C_CR1(base) |= STM32_I2C_CR1_PE; } return rv; } int i2c_raw_get_scl(int port) { enum gpio_signal g; if (get_scl_from_i2c_port(port, &g) == EC_SUCCESS) return gpio_get_level(g); /* If no SCL pin defined for this port, then return 1 to appear idle. */ return 1; } int i2c_raw_get_sda(int port) { enum gpio_signal g; if (get_sda_from_i2c_port(port, &g) == EC_SUCCESS) return gpio_get_level(g); /* If no SDA pin defined for this port, then return 1 to appear idle. */ return 1; } int i2c_get_line_levels(int port) { return (i2c_raw_get_sda(port) ? I2C_LINE_SDA_HIGH : 0) | (i2c_raw_get_scl(port) ? I2C_LINE_SCL_HIGH : 0); } /*****************************************************************************/ /* Hooks */ #ifdef CONFIG_I2C_CONTROLLER /* Handle an upcoming frequency change. */ static void i2c_pre_freq_change_hook(void) { const struct i2c_port_t *p = i2c_ports; int i; /* Lock I2C ports so freq change can't interrupt an I2C transaction */ for (i = 0; i < i2c_ports_used; i++, p++) i2c_lock(p->port, 1); } DECLARE_HOOK(HOOK_PRE_FREQ_CHANGE, i2c_pre_freq_change_hook, HOOK_PRIO_DEFAULT); /* Handle a frequency change */ static void i2c_freq_change_hook(void) { const struct i2c_port_t *p = i2c_ports; int i; /* * Handle CPU clock changing frequency and unlock I2C ports we locked * in pre-freq change hook */ for (i = 0; i < i2c_ports_used; i++, p++) { i2c_set_timingr_port(p); i2c_lock(p->port, 0); } } DECLARE_HOOK(HOOK_FREQ_CHANGE, i2c_freq_change_hook, HOOK_PRIO_DEFAULT); #endif /*****************************************************************************/ /* Init all available i2c ports */ void i2c_init(void) { const struct i2c_port_t *p = i2c_ports; int i; /* Configure GPIO alt-func for all I2C ports */ gpio_config_module(MODULE_I2C, 1); /* Enable the I2C clock for all I2C ports */ clock_enable_module(MODULE_I2C, 1); /* Per port configuration */ for (i = 0; i < i2c_ports_used; i++, p++) i2c_init_port(p); }