/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* STM implementation for flashing ITE-based ECs over i2c */ #include "i2c_ite_flash_support.h" #include "i2c.h" #include "registers.h" #include "time.h" /* * As of 2018-11-27 the default for both is 60 bytes. These larger values allow * for reflashing of ITE EC chips over I2C * (https://issuetracker.google.com/79684405) in reasonably speedy fashion. If * the EC firmware defaults are ever raised significantly, consider removing * these overrides. * * As of 2018-11-27 the actual maximum write size supported by the I2C-over-USB * protocol is (1<<12)-1, and the maximum read size supported is * (1<<15)-1. However compile time assertions require that these values be * powers of 2 after overheads are included. Thus, the write limit set here * /should/ be (1<<12)-4 and the read limit should be (1<<15)-6, however those * ideal limits are not actually possible because stm32 lacks sufficient * spare memory for them. With symmetrical limits, the maximum that currently * fits is (1<<11)-4 write limit and (1<<11)-6 read limit, leaving 1404 bytes of * RAM available. * * However even with a sufficiently large write value here, the maximum that * actually works as of 2018-12-03 is 255 bytes. Additionally, ITE EC firmware * image verification requires exactly 256 byte reads. Thus the only useful * powers-of-2-minus-overhead limits to set here are (1<<9)-4 writes and * (1<<9)-6 reads, leaving 6012 bytes of RAM available, down from 7356 bytes of * RAM available with the default 60 byte limits. */ #if CONFIG_USB_I2C_MAX_WRITE_COUNT != ((1<<9) - 4) #error Must set CONFIG_USB_I2C_MAX_WRITE_COUNT to ((1<<9) - 4) #endif #if CONFIG_USB_I2C_MAX_READ_COUNT != ((1<<9) - 6) #error Must set CONFIG_USB_I2C_MAX_WRITE_COUNT to ((1<<9) - 6) #endif /* * iteflash requires 256 byte reads for verifying ITE EC firmware. Without this * the limit is CONFIG_I2C_CHIP_MAX_TRANSFER_SIZE which is 255 for STM32F0 due * to an 8 bit field, per src/platform/ec/include/config.h comment. */ #ifndef CONFIG_I2C_XFER_LARGE_TRANSFER #error Must define CONFIG_I2C_XFER_LARGE_TRANSFER #endif #define KHz 1000 #define MHz (1000 * KHz) /* * These constants are values that one might want to try changing if * enable_ite_dfu stops working, or does not work on a new ITE EC chip revision. */ #define ITE_DFU_I2C_CMD_ADDR_FLAGS 0x5A #define ITE_DFU_I2C_DATA_ADDR_FLAGS 0x35 #define SMCLK_WAVEFORM_PERIOD_HZ (100 * KHz) #define SMDAT_WAVEFORM_PERIOD_HZ (200 * KHz) #define START_DELAY_MS 5 #define SPECIAL_WAVEFORM_MS 50 #define PLL_STABLE_MS 10 /* * Digital line levels to hold before (PRE_) or after (POST_) sending the * special waveforms. 0 for low, 1 for high. */ #define SMCLK_PRE_LEVEL 0 #define SMDAT_PRE_LEVEL 0 #define SMCLK_POST_LEVEL 0 #define SMDAT_POST_LEVEL 0 /* The caller should hold the i2c_lock() for ite_dfu_config.i2c_port. */ static int ite_i2c_read_register(uint8_t register_offset, uint8_t *output) { /* * Ideally the write and read would be done in one I2C transaction, as * is normally done when reading from the same I2C address that the * write was sent to. The ITE EC is abnormal in that regard, with its * different 7-bit addresses for writes vs reads. * * i2c_xfer() does not support that. Its I2C_XFER_START and * I2C_XFER_STOP flag bits do not cleanly support that scenario, they * are for continuing transfers without either of STOP or START * in-between. * * For what it's worth, the iteflash.c FTDI-based implementation of this * does the same thing, issuing a STOP between the write and read. This * works, even if perhaps it should not. */ int ret; /* Tell the ITE EC which register we want to read. */ ret = i2c_xfer_unlocked(ite_dfu_config.i2c_port, ITE_DFU_I2C_CMD_ADDR_FLAGS, ®ister_offset, sizeof(register_offset), NULL, 0, I2C_XFER_SINGLE); if (ret != EC_SUCCESS) return ret; /* Read in the 1 byte register value. */ ret = i2c_xfer_unlocked(ite_dfu_config.i2c_port, ITE_DFU_I2C_DATA_ADDR_FLAGS, NULL, 0, output, sizeof(*output), I2C_XFER_SINGLE); return ret; } /* Helper function to read ITE chip ID, for verifying ITE DFU mode. */ static int cprint_ite_chip_id(void) { /* * Per i2c_read8() implementation, use an array even for single byte * reads to ensure alignment for DMA on STM32. */ uint8_t chipid1[1]; uint8_t chipid2[1]; uint8_t chipver[1]; int ret; int chip_version; int flash_kb; i2c_lock(ite_dfu_config.i2c_port, 1); /* Read the CHIPID1 register. */ ret = ite_i2c_read_register(0x00, chipid1); if (ret != EC_SUCCESS) goto unlock; /* Read the CHIPID2 register. */ ret = ite_i2c_read_register(0x01, chipid2); if (ret != EC_SUCCESS) goto unlock; /* Read the CHIPVER register. */ ret = ite_i2c_read_register(0x02, chipver); unlock: i2c_lock(ite_dfu_config.i2c_port, 0); if (ret != EC_SUCCESS) return ret; /* * Compute chip version and embedded flash size from the CHIPVER value. * * Chip version is mapping from bit 3-0 * Flash size is mapping from bit 7-4 * * Chip Version (bits 3-0) * 0: AX * 1: BX * 2: CX * 3: DX * * CX or prior flash size (bits 7-4) * 0:128KB * 4:192KB * 8:256KB * * DX flash size (bits 7-4) * 0:128KB * 2:192KB * 4:256KB * 6:384KB * 8:512KB */ chip_version = chipver[0] & 0x07; if (chip_version < 0x3) { /* Chip version is CX or earlier. */ switch (chipver[0] >> 4) { case 0: flash_kb = 128; break; case 4: flash_kb = 192; break; case 8: flash_kb = 256; break; default: flash_kb = -2; } } else if (chip_version == 0x3) { /* Chip version is DX. */ switch (chipver[0] >> 4) { case 0: flash_kb = 128; break; case 2: flash_kb = 192; break; case 4: flash_kb = 256; break; case 6: flash_kb = 384; break; case 8: flash_kb = 512; break; default: flash_kb = -3; } } else { /* Unrecognized chip version. */ flash_kb = -1; } ccprintf("ITE EC info: CHIPID1=0x%02X CHIPID2=0x%02X CHIPVER=0x%02X ", chipid1[0], chipid2[0], chipver[0]); ccprintf("version=%d flash_bytes=%d\n", chip_version, flash_kb << 10); /* * IT8320_eflash_SMBus_Programming_Guide.pdf says it is an error if * CHIPID1 != 0x83. */ if (chipid1[0] != 0x83) ret = EC_ERROR_HW_INTERNAL; return ret; } /* Enable ITE direct firmware update (DFU) mode. */ static int command_enable_ite_dfu(int argc, char **argv) { if (argc > 1) return EC_ERROR_PARAM_COUNT; /* Ensure we can perform the dfu operation */ if (ite_dfu_config.access_allow && !ite_dfu_config.access_allow()) return EC_ERROR_ACCESS_DENIED; /* Enable peripheral clocks. */ STM32_RCC_APB2ENR |= STM32_RCC_APB2ENR_TIM16EN | STM32_RCC_APB2ENR_TIM17EN; /* Reset timer registers which are not otherwise set below. */ STM32_TIM_CR2(16) = 0x0000; STM32_TIM_CR2(17) = 0x0000; STM32_TIM_DIER(16) = 0x0000; STM32_TIM_DIER(17) = 0x0000; STM32_TIM_SR(16) = 0x0000; STM32_TIM_SR(17) = 0x0000; STM32_TIM_CNT(16) = 0x0000; STM32_TIM_CNT(17) = 0x0000; STM32_TIM_RCR(16) = 0x0000; STM32_TIM_RCR(17) = 0x0000; STM32_TIM_DCR(16) = 0x0000; STM32_TIM_DCR(17) = 0x0000; STM32_TIM_DMAR(16) = 0x0000; STM32_TIM_DMAR(17) = 0x0000; /* Prescale to 1 MHz and use ARR to achieve NNN KHz periods. */ /* This approach is seen in STM's documentation. */ STM32_TIM_PSC(16) = (CPU_CLOCK / MHz) - 1; STM32_TIM_PSC(17) = (CPU_CLOCK / MHz) - 1; /* Set the waveform periods based on 1 MHz prescale. */ STM32_TIM_ARR(16) = (MHz / SMCLK_WAVEFORM_PERIOD_HZ) - 1; STM32_TIM_ARR(17) = (MHz / SMDAT_WAVEFORM_PERIOD_HZ) - 1; /* Set output compare 1 mode to PWM mode 1 and enable preload. */ STM32_TIM_CCMR1(16) = STM32_TIM_CCMR1_OC1M_PWM_MODE_1 | STM32_TIM_CCMR1_OC1PE; STM32_TIM_CCMR1(17) = STM32_TIM_CCMR1_OC1M_PWM_MODE_1 | STM32_TIM_CCMR1_OC1PE; /* * Enable output compare 1 (or its N counterpart). Note that if only * OC1N is enabled, then it is not complemented. From datasheet: * "When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented" * * Note: we want the rising edge of SDA to be in the middle of SCL, so * invert the SDA (faster) signal. */ if (ite_dfu_config.use_complement_timer_channel) { STM32_TIM_CCER(16) = STM32_TIM_CCER_CC1NE; STM32_TIM_CCER(17) = STM32_TIM_CCER_CC1NE | STM32_TIM_CCER_CC1NP; } else { STM32_TIM_CCER(16) = STM32_TIM_CCER_CC1E; STM32_TIM_CCER(17) = STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P; } /* Enable main output. */ STM32_TIM_BDTR(16) = STM32_TIM_BDTR_MOE; STM32_TIM_BDTR(17) = STM32_TIM_BDTR_MOE; /* Update generation (reinitialize counters). */ STM32_TIM_EGR(16) = STM32_TIM_EGR_UG; STM32_TIM_EGR(17) = STM32_TIM_EGR_UG; /* Set duty cycle to 0% or 100%, pinning each channel low or high. */ STM32_TIM_CCR1(16) = SMCLK_PRE_LEVEL ? 0xFFFF : 0x0000; STM32_TIM_CCR1(17) = SMDAT_PRE_LEVEL ? 0xFFFF : 0x0000; /* Enable timer counters. */ STM32_TIM_CR1(16) = STM32_TIM_CR1_CEN; STM32_TIM_CR1(17) = STM32_TIM_CR1_CEN; /* Set GPIO to alternate mode TIM(16|17)_CH1(N)? */ gpio_config_pin(MODULE_I2C_TIMERS, ite_dfu_config.scl, 1); gpio_config_pin(MODULE_I2C_TIMERS, ite_dfu_config.sda, 1); msleep(START_DELAY_MS); /* Set pulse width to half of waveform period. */ STM32_TIM_CCR1(16) = (MHz / SMCLK_WAVEFORM_PERIOD_HZ) / 2; STM32_TIM_CCR1(17) = (MHz / SMDAT_WAVEFORM_PERIOD_HZ) / 2; msleep(SPECIAL_WAVEFORM_MS); /* Set duty cycle to 0% or 100%, pinning each channel low or high. */ STM32_TIM_CCR1(16) = SMCLK_POST_LEVEL ? 0xFFFF : 0x0000; STM32_TIM_CCR1(17) = SMDAT_POST_LEVEL ? 0xFFFF : 0x0000; msleep(PLL_STABLE_MS); /* Set GPIO back to alternate mode I2C. */ gpio_config_pin(MODULE_I2C, ite_dfu_config.scl, 1); gpio_config_pin(MODULE_I2C, ite_dfu_config.sda, 1); /* Disable timer counters. */ STM32_TIM_CR1(16) = 0x0000; STM32_TIM_CR1(17) = 0x0000; /* Disable peripheral clocks. */ STM32_RCC_APB2ENR &= ~(STM32_RCC_APB2ENR_TIM16EN | STM32_RCC_APB2ENR_TIM17EN); return cprint_ite_chip_id(); } DECLARE_CONSOLE_COMMAND( enable_ite_dfu, command_enable_ite_dfu, "", "Enable ITE Direct Firmware Update (DFU) mode"); /* Read ITE chip ID. Can be used to verify ITE DFU mode. */ static int command_get_ite_chipid(int argc, char **argv) { if (argc > 1) return EC_ERROR_PARAM_COUNT; /* Ensure we can perform the dfu operation */ if (ite_dfu_config.access_allow && !ite_dfu_config.access_allow()) return EC_ERROR_ACCESS_DENIED; return cprint_ite_chip_id(); } DECLARE_CONSOLE_COMMAND( get_ite_chipid, command_get_ite_chipid, "", "Read ITE EC chip ID, version, flash size (must be in DFU mode)");