/* Copyright 2014 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "adc.h" #include "builtin/assert.h" #include "clock.h" #include "common.h" #include "console.h" #include "crc.h" #include "dma.h" #include "gpio.h" #include "hwtimer.h" #include "hooks.h" #include "registers.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" #include "usb_pd.h" #include "usb_pd_config.h" #ifdef CONFIG_COMMON_RUNTIME #define CPRINTF(format, args...) cprintf(CC_USBPD, format, ##args) #define CPRINTS(format, args...) cprints(CC_USBPD, format, ##args) #else #define CPRINTF(format, args...) #define CPRINTS(format, args...) #endif #define PD_DATARATE 300000 /* Hz */ /* * Maximum size of a Power Delivery packet (in bits on the wire) : * 16-bit header + 0..7 32-bit data objects (+ 4b5b encoding) * 64-bit preamble + SOP (4x 5b) + message in 4b5b + 32-bit CRC + EOP (1x 5b) * = 64 + 4*5 + 16 * 5/4 + 7 * 32 * 5/4 + 32 * 5/4 + 5 */ #define PD_BIT_LEN 429 #define PD_MAX_RAW_SIZE (PD_BIT_LEN * 2) /* maximum number of consecutive similar bits with Biphase Mark Coding */ #define MAX_BITS 2 /* alternating bit sequence used for packet preamble : 00 10 11 01 00 .. */ #define PD_PREAMBLE 0xB4B4B4B4 /* starts with 0, ends with 1 */ #define TX_CLOCK_DIV ((clock_get_freq() / (2 * PD_DATARATE))) /* threshold for 1 300-khz period */ #define PERIOD 4 #define NB_PERIOD(from, to) ((((to) - (from) + (PERIOD / 2)) & 0xFF) / PERIOD) #define PERIOD_THRESHOLD ((PERIOD + 2 * PERIOD) / 2) static struct pd_physical { /* samples for the PD messages */ uint32_t raw_samples[DIV_ROUND_UP(PD_MAX_RAW_SIZE, sizeof(uint32_t))]; /* state of the bit decoder */ int d_toggle; int d_lastlen; uint32_t d_last; int b_toggle; /* DMA structures for each PD port */ struct dma_option dma_tx_option; struct dma_option dma_tim_option; /* Pointers to timer register for each port */ timer_ctlr_t *tim_tx; timer_ctlr_t *tim_rx; } pd_phy[CONFIG_USB_PD_PORT_MAX_COUNT]; /* keep track of RX edge timing in order to trigger receive */ static timestamp_t rx_edge_ts[CONFIG_USB_PD_PORT_MAX_COUNT] [PD_RX_TRANSITION_COUNT]; static int rx_edge_ts_idx[CONFIG_USB_PD_PORT_MAX_COUNT]; /* keep track of transmit polarity for DMA interrupt */ static int tx_dma_polarities[CONFIG_USB_PD_PORT_MAX_COUNT]; void pd_init_dequeue(int port) { /* preamble ends with 1 */ pd_phy[port].d_toggle = 0; pd_phy[port].d_last = 0; pd_phy[port].d_lastlen = 0; } static int wait_bits(int port, int nb) { int avail; stm32_dma_chan_t *rx = dma_get_channel(DMAC_TIM_RX(port)); avail = dma_bytes_done(rx, PD_MAX_RAW_SIZE); if (avail < nb) { /* no received yet ... */ while ((dma_bytes_done(rx, PD_MAX_RAW_SIZE) < nb) && !(pd_phy[port].tim_rx->sr & 4)) ; /* optimized for latency, not CPU usage ... */ if (dma_bytes_done(rx, PD_MAX_RAW_SIZE) < nb) { CPRINTS("PD TMOUT RX %d/%d", dma_bytes_done(rx, PD_MAX_RAW_SIZE), nb); return -1; } } return nb; } int pd_dequeue_bits(int port, int off, int len, uint32_t *val) { int w; uint8_t cnt = 0xff; uint8_t *samples = (uint8_t *)pd_phy[port].raw_samples; while ((pd_phy[port].d_lastlen < len) && (off < PD_MAX_RAW_SIZE - 1)) { w = wait_bits(port, off + 2); if (w < 0) goto stream_err; cnt = samples[off] - samples[off - 1]; if (!cnt || (cnt > 3 * PERIOD)) goto stream_err; off++; if (cnt <= PERIOD_THRESHOLD) { /* w = wait_bits(port, off + 1); if (w < 0) goto stream_err; */ cnt = samples[off] - samples[off - 1]; if (cnt > PERIOD_THRESHOLD) goto stream_err; off++; } /* enqueue the bit of the last period */ pd_phy[port].d_last = (pd_phy[port].d_last >> 1) | (cnt <= PERIOD_THRESHOLD ? 0x80000000 : 0); pd_phy[port].d_lastlen++; } if (off < PD_MAX_RAW_SIZE) { *val = (pd_phy[port].d_last << (pd_phy[port].d_lastlen - len)) >> (32 - len); pd_phy[port].d_lastlen -= len; return off; } else { return -1; } stream_err: /* CPRINTS("PD Invalid %d @%d", cnt, off); */ return -1; } int pd_find_preamble(int port) { int bit; uint8_t *vals = (uint8_t *)pd_phy[port].raw_samples; /* * Detect preamble * Alternate 1-period 1-period & 2-period. */ uint32_t all = 0; stm32_dma_chan_t *rx = dma_get_channel(DMAC_TIM_RX(port)); for (bit = 1; bit < PD_MAX_RAW_SIZE - 1; bit++) { uint8_t cnt; /* wait if the bit is not received yet ... */ if (PD_MAX_RAW_SIZE - rx->cndtr < bit + 1) { while ((PD_MAX_RAW_SIZE - rx->cndtr < bit + 1) && !(pd_phy[port].tim_rx->sr & 4)) ; if (pd_phy[port].tim_rx->sr & 4) { CPRINTS("PD TMOUT RX %d/%d", PD_MAX_RAW_SIZE - rx->cndtr, bit); return -1; } } cnt = vals[bit] - vals[bit - 1]; all = (all >> 1) | (cnt <= PERIOD_THRESHOLD ? BIT(31) : 0); if (all == 0x36db6db6) return bit - 1; /* should be SYNC-1 */ if (all == 0xF33F3F3F) return PD_RX_ERR_HARD_RESET; /* got HARD-RESET */ if (all == 0x3c7fe0ff) return PD_RX_ERR_CABLE_RESET; /* got CABLE-RESET */ } return -1; } int pd_write_preamble(int port) { uint32_t *msg = pd_phy[port].raw_samples; /* 64-bit x2 preamble */ msg[0] = PD_PREAMBLE; msg[1] = PD_PREAMBLE; msg[2] = PD_PREAMBLE; msg[3] = PD_PREAMBLE; pd_phy[port].b_toggle = 0x3FF; /* preamble ends with 1 */ return 2 * 64; } int pd_write_sym(int port, int bit_off, uint32_t val10) { uint32_t *msg = pd_phy[port].raw_samples; int word_idx = bit_off / 32; int bit_idx = bit_off % 32; uint32_t val = pd_phy[port].b_toggle ^ val10; pd_phy[port].b_toggle = val & 0x200 ? 0x3FF : 0; if (bit_idx <= 22) { if (bit_idx == 0) msg[word_idx] = 0; msg[word_idx] |= val << bit_idx; } else { msg[word_idx] |= val << bit_idx; msg[word_idx + 1] = val >> (32 - bit_idx); /* side effect: clear the new word when starting it */ } return bit_off + 5 * 2; } int pd_write_last_edge(int port, int bit_off) { uint32_t *msg = pd_phy[port].raw_samples; int word_idx = bit_off / 32; int bit_idx = bit_off % 32; if (bit_idx == 0) msg[word_idx] = 0; if (!pd_phy[port].b_toggle /* last bit was 0 */) { /* transition to 1, another 1, then 0 */ if (bit_idx == 31) { msg[word_idx++] |= 1 << bit_idx; msg[word_idx] = 1; } else { msg[word_idx] |= 3 << bit_idx; } } /* ensure that the trailer is 0 */ msg[word_idx + 1] = 0; return bit_off + 3; } #ifdef CONFIG_COMMON_RUNTIME void pd_dump_packet(int port, const char *msg) { uint8_t *vals = (uint8_t *)pd_phy[port].raw_samples; int bit; CPRINTF("ERR %s:\n000:- ", msg); /* Packet debug output */ for (bit = 1; bit < PD_MAX_RAW_SIZE; bit++) { int cnt = NB_PERIOD(vals[bit - 1], vals[bit]); if ((bit & 31) == 0) CPRINTF("\n%03d:", bit); CPRINTF("%1d ", cnt); } CPRINTF("><\n"); cflush(); for (bit = 0; bit < PD_MAX_RAW_SIZE; bit++) { if ((bit & 31) == 0) CPRINTF("\n%03d:", bit); CPRINTF("%02x ", vals[bit]); } CPRINTF("||\n"); cflush(); } #endif /* CONFIG_COMMON_RUNTIME */ /* --- SPI TX operation --- */ void pd_tx_spi_init(int port) { stm32_spi_regs_t *spi = SPI_REGS(port); /* Enable Tx DMA for our first transaction */ spi->cr2 = STM32_SPI_CR2_TXDMAEN | STM32_SPI_CR2_DATASIZE(8); /* Enable the slave SPI: LSB first, force NSS, TX only, CPHA */ spi->cr1 = STM32_SPI_CR1_SPE | STM32_SPI_CR1_LSBFIRST | STM32_SPI_CR1_SSM | STM32_SPI_CR1_BIDIMODE | STM32_SPI_CR1_BIDIOE | STM32_SPI_CR1_CPHA; } static void tx_dma_done(void *data) { int port = (int)data; int polarity = tx_dma_polarities[port]; stm32_spi_regs_t *spi = SPI_REGS(port); while (spi->sr & STM32_SPI_SR_FTLVL) ; /* wait for TX FIFO empty */ while (spi->sr & STM32_SPI_SR_BSY) ; /* wait for BSY == 0 */ /* Stop counting */ pd_phy[port].tim_tx->cr1 &= ~1; /* put TX pins and reference in Hi-Z */ pd_tx_disable(port, polarity); #if defined(CONFIG_COMMON_RUNTIME) && defined(CONFIG_DMA_DEFAULT_HANDLERS) task_set_event(PD_PORT_TO_TASK_ID(port), TASK_EVENT_DMA_TC); #endif } int pd_start_tx(int port, int polarity, int bit_len) { stm32_dma_chan_t *tx = dma_get_channel(DMAC_SPI_TX(port)); #ifndef CONFIG_USB_PD_TX_PHY_ONLY /* disable RX detection interrupt */ pd_rx_disable_monitoring(port); /* Check that we are not receiving a frame to avoid collisions */ if (pd_rx_started(port)) return -5; #endif /* !CONFIG_USB_PD_TX_PHY_ONLY */ /* Initialize spi peripheral to prepare for transmission. */ pd_tx_spi_init(port); /* * Set timer to one tick before reset so that the first tick causes * a rising edge on the output. */ pd_phy[port].tim_tx->cnt = TX_CLOCK_DIV - 1; /* update DMA configuration */ dma_prepare_tx(&(pd_phy[port].dma_tx_option), DIV_ROUND_UP(bit_len, 8), pd_phy[port].raw_samples); /* Flush data in write buffer so that DMA can get the latest data */ asm volatile("dmb;"); /* Kick off the DMA to send the data */ dma_clear_isr(DMAC_SPI_TX(port)); #if defined(CONFIG_COMMON_RUNTIME) && defined(CONFIG_DMA_DEFAULT_HANDLERS) tx_dma_polarities[port] = polarity; if (!(pd_phy[port].dma_tx_option.flags & STM32_DMA_CCR_CIRC)) { /* Only enable interrupt if not in circular mode */ dma_enable_tc_interrupt_callback(DMAC_SPI_TX(port), &tx_dma_done, (void *)port); } #endif dma_go(tx); /* * Drive the CC line from the TX block : * - put SPI function on TX pin. * - set the low level reference. * Call this last before enabling timer in order to meet spec on * timing between enabling TX and clocking out bits. */ pd_tx_enable(port, polarity); /* Start counting at 300Khz*/ pd_phy[port].tim_tx->cr1 |= 1; return bit_len; } void pd_tx_done(int port, int polarity) { #if defined(CONFIG_COMMON_RUNTIME) && defined(CONFIG_DMA_DEFAULT_HANDLERS) /* wait for DMA, DMA interrupt will stop the SPI clock */ task_wait_event_mask(TASK_EVENT_DMA_TC, DMA_TRANSFER_TIMEOUT_US); dma_disable_tc_interrupt(DMAC_SPI_TX(port)); #else tx_dma_polarities[port] = polarity; tx_dma_done((void *)port); #endif /* Reset SPI to clear remaining data in buffer */ pd_tx_spi_reset(port); } void pd_tx_set_circular_mode(int port) { pd_phy[port].dma_tx_option.flags |= STM32_DMA_CCR_CIRC; } void pd_tx_clear_circular_mode(int port) { /* clear the circular mode bit in flag variable */ pd_phy[port].dma_tx_option.flags &= ~STM32_DMA_CCR_CIRC; /* disable dma transaction underway */ dma_disable(DMAC_SPI_TX(port)); #if defined(CONFIG_COMMON_RUNTIME) && defined(CONFIG_DMA_DEFAULT_HANDLERS) tx_dma_done((void *)port); #endif } /* --- RX operation using comparator linked to timer --- */ void pd_rx_start(int port) { /* start sampling the edges on the CC line using the RX timer */ dma_start_rx(&(pd_phy[port].dma_tim_option), PD_MAX_RAW_SIZE, pd_phy[port].raw_samples); /* enable TIM2 DMA requests */ pd_phy[port].tim_rx->egr = 0x0001; /* reset counter / reload PSC */ ; pd_phy[port].tim_rx->sr = 0; /* clear overflows */ pd_phy[port].tim_rx->cr1 |= 1; } void pd_rx_complete(int port) { /* stop stampling TIM2 */ pd_phy[port].tim_rx->cr1 &= ~1; /* stop DMA */ dma_disable(DMAC_TIM_RX(port)); } int pd_rx_started(int port) { /* is the sampling timer running ? */ return pd_phy[port].tim_rx->cr1 & 1; } void pd_rx_enable_monitoring(int port) { /* clear comparator external interrupt */ STM32_EXTI_PR = EXTI_COMP_MASK(port); /* enable comparator external interrupt */ STM32_EXTI_IMR |= EXTI_COMP_MASK(port); } void pd_rx_disable_monitoring(int port) { /* disable comparator external interrupt */ STM32_EXTI_IMR &= ~EXTI_COMP_MASK(port); /* clear comparator external interrupt */ STM32_EXTI_PR = EXTI_COMP_MASK(port); } uint64_t get_time_since_last_edge(int port) { int prev_idx = (rx_edge_ts_idx[port] == 0) ? PD_RX_TRANSITION_COUNT - 1 : rx_edge_ts_idx[port] - 1; return get_time().val - rx_edge_ts[port][prev_idx].val; } /* detect an edge on the PD RX pin */ void pd_rx_handler(void) { int pending, i; int next_idx; pending = STM32_EXTI_PR; #ifdef CONFIG_USB_CTVPD /* Charge-Through Side detach event */ if (pending & EXTI_COMP2_MASK) { task_wake(PD_PORT_TO_TASK_ID(0)); /* Clear interrupt */ STM32_EXTI_PR = EXTI_COMP2_MASK; pending &= ~EXTI_COMP2_MASK; } #endif for (i = 0; i < board_get_usb_pd_port_count(); i++) { if (pending & EXTI_COMP_MASK(i)) { rx_edge_ts[i][rx_edge_ts_idx[i]].val = get_time().val; next_idx = (rx_edge_ts_idx[i] == PD_RX_TRANSITION_COUNT - 1) ? 0 : rx_edge_ts_idx[i] + 1; #if defined(CONFIG_LOW_POWER_IDLE) && \ defined(CONFIG_USB_PD_LOW_POWER_IDLE_WHEN_CONNECTED) /* * Do not deep sleep while waiting for more edges. For * most boards, sleep is already disabled due to being * in PD connected state, but boards which define * CONFIG_USB_PD_LOW_POWER_IDLE_WHEN_CONNECTED can * sleep while connected. */ disable_sleep(SLEEP_MASK_USB_PD); #endif /* * If we have seen enough edges in a certain amount of * time, then trigger RX start. */ if ((rx_edge_ts[i][rx_edge_ts_idx[i]].val - rx_edge_ts[i][next_idx].val) < PD_RX_TRANSITION_WINDOW) { /* start sampling */ pd_rx_start(i); /* * ignore the comparator IRQ until we are done * with current message */ pd_rx_disable_monitoring(i); /* trigger the analysis in the task */ pd_rx_event(i); } else { /* do not trigger RX start, just clear int */ STM32_EXTI_PR = EXTI_COMP_MASK(i); } rx_edge_ts_idx[i] = next_idx; } } } #ifdef CONFIG_USB_PD_RX_COMP_IRQ static void _pd_rx_handler(void) { pd_rx_handler(); } DECLARE_IRQ(STM32_IRQ_COMP, _pd_rx_handler, 1); #endif /* --- release hardware --- */ void pd_hw_release(int port) { __hw_timer_enable_clock(TIM_CLOCK_PD_RX(port), 0); __hw_timer_enable_clock(TIM_CLOCK_PD_TX(port), 0); dma_disable(DMAC_SPI_TX(port)); } /* --- Startup initialization --- */ void pd_hw_init_rx(int port) { struct pd_physical *phy = &pd_phy[port]; /* configure registers used for timers */ phy->tim_rx = (void *)TIM_REG_RX(port); /* configure RX DMA */ phy->dma_tim_option.channel = DMAC_TIM_RX(port); phy->dma_tim_option.periph = (void *)(TIM_RX_CCR_REG(port)); phy->dma_tim_option.flags = STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_16_BIT; /* --- set counter for RX timing : 2.4Mhz rate, free-running --- */ __hw_timer_enable_clock(TIM_CLOCK_PD_RX(port), 1); /* Timer configuration */ phy->tim_rx->cr1 = 0x0000; phy->tim_rx->cr2 = 0x0000; phy->tim_rx->dier = 0x0000; /* Auto-reload value : 16-bit free running counter */ phy->tim_rx->arr = 0xFFFF; /* Timeout for message receive */ phy->tim_rx->ccr[2] = (2400000 / 1000) * USB_PD_RX_TMOUT_US / 1000; /* Timer ICx input configuration */ if (TIM_RX_CCR_IDX(port) == 1) phy->tim_rx->ccmr1 |= TIM_CCR_CS << 0; else if (TIM_RX_CCR_IDX(port) == 2) phy->tim_rx->ccmr1 |= TIM_CCR_CS << 8; else if (TIM_RX_CCR_IDX(port) == 4) phy->tim_rx->ccmr2 |= TIM_CCR_CS << 8; else /* Unsupported RX timer capture input */ ASSERT(0); phy->tim_rx->ccer = 0xB << ((TIM_RX_CCR_IDX(port) - 1) * 4); /* configure DMA request on CCRx update */ phy->tim_rx->dier |= 1 << (8 + TIM_RX_CCR_IDX(port)); /* CCxDE */ ; /* set prescaler to /26 (F=1.2Mhz, T=0.8us) */ phy->tim_rx->psc = (clock_get_freq() / 2400000) - 1; /* Reload the pre-scaler and reset the counter (clear CCRx) */ phy->tim_rx->egr = 0x0001 | (1 << TIM_RX_CCR_IDX(port)); /* clear update event from reloading */ phy->tim_rx->sr = 0; /* --- DAC configuration for comparator at 850mV --- */ #ifdef CONFIG_PD_USE_DAC_AS_REF /* Enable DAC interface clock. */ STM32_RCC_APB1ENR |= BIT(29); /* Delay 1 APB clock cycle after the clock is enabled */ clock_wait_bus_cycles(BUS_APB, 1); /* set voltage Vout=0.850V (Vref = 3.0V) */ STM32_DAC_DHR12RD = 850 * 4096 / 3000; /* Start DAC channel 1 */ STM32_DAC_CR = STM32_DAC_CR_EN1; #endif /* --- COMP2 as comparator for RX vs Vmid = 850mV --- */ #ifdef CONFIG_USB_PD_INTERNAL_COMP #if defined(CHIP_FAMILY_STM32F0) || defined(CHIP_FAMILY_STM32F3) /* turn on COMP/SYSCFG */ STM32_RCC_APB2ENR |= BIT(0); /* Delay 1 APB clock cycle after the clock is enabled */ clock_wait_bus_cycles(BUS_APB, 1); /* currently in hi-speed mode : TODO revisit later, INM = PA0(INM6) */ STM32_COMP_CSR = STM32_COMP_CMP1MODE_LSPEED | STM32_COMP_CMP1INSEL_INM6 | CMP1OUTSEL | STM32_COMP_CMP1HYST_HI | STM32_COMP_CMP2MODE_LSPEED | STM32_COMP_CMP2INSEL_INM6 | CMP2OUTSEL | STM32_COMP_CMP2HYST_HI; #elif defined(CHIP_FAMILY_STM32L) STM32_RCC_APB1ENR |= BIT(31); /* turn on COMP */ STM32_COMP_CSR = STM32_COMP_OUTSEL_TIM2_IC4 | STM32_COMP_INSEL_DAC_OUT1 | STM32_COMP_SPEED_FAST; /* route PB4 to COMP input2 through GR6_1 bit 4 (or PB5->GR6_2 bit 5) */ STM32_RI_ASCR2 |= BIT(4); #else #error Unsupported chip family #endif #endif /* CONFIG_USB_PD_INTERNAL_COMP */ /* comparator interrupt setup */ EXTI_XTSR |= EXTI_COMP_MASK(port); STM32_EXTI_IMR |= EXTI_COMP_MASK(port); task_enable_irq(IRQ_COMP); } void pd_hw_init(int port, enum pd_power_role role) { struct pd_physical *phy = &pd_phy[port]; uint32_t val; /* Initialize all PD pins to default state based on desired role */ pd_config_init(port, role); /* set 40 MHz pin speed on communication pins */ pd_set_pins_speed(port); /* --- SPI init --- */ /* Enable clocks to SPI module */ spi_enable_clock(port); /* Initialize SPI peripheral registers */ pd_tx_spi_init(port); /* configure TX DMA */ phy->dma_tx_option.channel = DMAC_SPI_TX(port); phy->dma_tx_option.periph = (void *)&SPI_REGS(port)->dr; phy->dma_tx_option.flags = STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT; dma_prepare_tx(&(phy->dma_tx_option), PD_MAX_RAW_SIZE, phy->raw_samples); /* configure registers used for timers */ phy->tim_tx = (void *)TIM_REG_TX(port); /* --- set the TX timer with updates at 600KHz (BMC frequency) --- */ __hw_timer_enable_clock(TIM_CLOCK_PD_TX(port), 1); /* Timer configuration */ phy->tim_tx->cr1 = 0x0000; phy->tim_tx->cr2 = 0x0000; phy->tim_tx->dier = 0x0000; /* Auto-reload value : 600000 Khz overflow */ phy->tim_tx->arr = TX_CLOCK_DIV; /* 50% duty cycle on the output */ phy->tim_tx->ccr[TIM_TX_CCR_IDX(port)] = phy->tim_tx->arr / 2; /* Timer channel output configuration */ val = (6 << 4) | BIT(3); if ((TIM_TX_CCR_IDX(port) & 1) == 0) /* CH2 or CH4 */ val <<= 8; if (TIM_TX_CCR_IDX(port) <= 2) phy->tim_tx->ccmr1 = val; else phy->tim_tx->ccmr2 = val; phy->tim_tx->ccer = 1 << ((TIM_TX_CCR_IDX(port) - 1) * 4); phy->tim_tx->bdtr = 0x8000; /* set prescaler to /1 */ phy->tim_tx->psc = 0; /* Reload the pre-scaler and reset the counter */ phy->tim_tx->egr = 0x0001; #ifndef CONFIG_USB_PD_TX_PHY_ONLY /* Configure the reception side : comparators + edge timer + DMA */ pd_hw_init_rx(port); #endif /* CONFIG_USB_PD_TX_PHY_ONLY */ CPRINTS("USB PD initialized"); } void pd_set_clock(int port, int freq) { pd_phy[port].tim_tx->arr = clock_get_freq() / (2 * freq); }