/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "accelgyro.h" #include "body_detection.h" #include "console.h" #include "hwtimer.h" #include "lid_switch.h" #include "math_util.h" #include "motion_sense_fifo.h" #include "timer.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_ACCEL, outstr) #define CPRINTS(format, args...) cprints(CC_ACCEL, format, ##args) #define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ##args) static struct motion_sensor_t *body_sensor = &motion_sensors[CONFIG_BODY_DETECTION_SENSOR]; static int window_size = CONFIG_BODY_DETECTION_MAX_WINDOW_SIZE; static uint64_t var_threshold_scaled, confidence_delta_scaled; static int stationary_timeframe; static int history_idx; static enum body_detect_states motion_state = BODY_DETECTION_OFF_BODY; static bool history_initialized; static bool body_detect_enable; STATIC_IF(CONFIG_ACCEL_SPOOF_MODE) bool spoof_enable; static struct body_detect_motion_data { int history[CONFIG_BODY_DETECTION_MAX_WINDOW_SIZE]; /* acceleration */ int sum; /* sum(history) */ uint64_t n2_variance; /* n^2 * var(history) */ } data[2]; /* motion data for X-axis and Y-axis */ /* * This function will update new variance and new sum according to incoming * value, previous value, previous sum and previous variance. * In order to prevent inaccuracy, we use integer to calculate instead of float * * n: window size * x: data in the old window * x': data in the new window * x_0: oldest value in the window, will be replaced by x_n * x_n: new coming value * * n^2 * var(x') = n^2 * var(x) + (x_n - x_0) * * (n * (x_n + x_0) - sum(x') - sum(x)) */ static void update_motion_data(struct body_detect_motion_data *x, int x_n) { const int n = window_size; const int x_0 = x->history[history_idx]; const int sum_diff = x_n - x_0; const int new_sum = x->sum + sum_diff; x->n2_variance += sum_diff * ((int64_t)n * (x_n + x_0) - new_sum - x->sum); x->sum = new_sum; x->history[history_idx] = x_n; } /* Update motion data of X, Y with new sensor data. */ static void update_motion_variance(void) { update_motion_data(&data[X], body_sensor->xyz[X]); update_motion_data(&data[Y], body_sensor->xyz[Y]); history_idx = (history_idx + 1 >= window_size) ? 0 : history_idx + 1; } /* return Var(X) + Var(Y) */ static uint64_t get_motion_variance(void) { return (data[X].n2_variance + data[Y].n2_variance) / window_size / window_size; } static int calculate_motion_confidence(uint64_t var) { if (var < var_threshold_scaled - confidence_delta_scaled) return 0; if (var > var_threshold_scaled + confidence_delta_scaled) return 100; return 100 * (var - var_threshold_scaled + confidence_delta_scaled) / (2 * confidence_delta_scaled); } /* Change the motion state and commit the change to AP. */ void body_detect_change_state(enum body_detect_states state, bool spoof) { if (IS_ENABLED(CONFIG_ACCEL_SPOOF_MODE) && spoof_enable && !spoof) return; if (IS_ENABLED(CONFIG_GESTURE_HOST_DETECTION)) { struct ec_response_motion_sensor_data vector = { .flags = MOTIONSENSE_SENSOR_FLAG_BYPASS_FIFO, .activity_data = { .activity = MOTIONSENSE_ACTIVITY_BODY_DETECTION, .state = state, }, .sensor_num = MOTION_SENSE_ACTIVITY_SENSOR_ID, }; motion_sense_fifo_stage_data(&vector, NULL, 0, __hw_clock_source_read()); motion_sense_fifo_commit_data(); } /* change the motion state */ motion_state = state; if (state == BODY_DETECTION_ON_BODY) { /* reset time counting of stationary */ stationary_timeframe = 0; } /* state changing log */ CPRINTS("body_detect changed state to: %s body", motion_state ? "on" : "off"); } enum body_detect_states body_detect_get_state(void) { return motion_state; } /* Determine window size for 1 second by sensor data rate. */ static void determine_window_size(int odr) { window_size = odr / 1000; /* Normally, window_size should not exceed MAX_WINDOW_SIZE. */ if (window_size > CONFIG_BODY_DETECTION_MAX_WINDOW_SIZE) { /* This will cause window size not enough for 1 second */ CPRINTS("ODR exceeds CONFIG_BODY_DETECTION_MAX_WINDOW_SIZE"); window_size = CONFIG_BODY_DETECTION_MAX_WINDOW_SIZE; } } /* Determine variance threshold scale by range and resolution. */ static void determine_threshold_scale(int range, int resolution, int rms_noise) { /* * range: g * resolution: bits * data_1g: LSB/g * data_1g / 9800: LSB/(mm/s^2) * (data_1g / 9800)^2: (LSB^2)/(mm^2/s^4), which number of * var(sensor data) will represents 1 (mm^2/s^4) * rms_noise: ug * var_noise: mm^2/s^4 */ const int data_1g = BIT(resolution - 1) / range; const int multiplier = POW2(data_1g); const int divisor = POW2(9800); /* * We are measuring the var(X) + var(Y), so theoretically, the * var(noise) should be 2 * rms_noise^2. However, in most case, on a * very stationary plane, the average of var(noise) are less than 2 * * rms_noise^2. We can multiply the rms_noise^2 with the * CONFIG_BODY_DETECTION_VAR_NOISE_FACTOR / 100. */ const int var_noise = POW2((uint64_t)rms_noise) * CONFIG_BODY_DETECTION_VAR_NOISE_FACTOR * POW2(98) / 100 / POW2(10000); var_threshold_scaled = (uint64_t)(CONFIG_BODY_DETECTION_VAR_THRESHOLD + var_noise) * multiplier / divisor; confidence_delta_scaled = (uint64_t)CONFIG_BODY_DETECTION_CONFIDENCE_DELTA * multiplier / divisor; } void body_detect_reset(void) { int odr = body_sensor->drv->get_data_rate(body_sensor); int resolution = body_sensor->drv->get_resolution(body_sensor); int rms_noise = body_sensor->drv->get_rms_noise(body_sensor); body_detect_change_state(BODY_DETECTION_ON_BODY, false); /* * The sensor is suspended since its ODR is 0, * there is no need to reset until sensor is up again */ if (odr == 0) return; determine_window_size(odr); determine_threshold_scale(body_sensor->current_range, resolution, rms_noise); /* initialize motion data and state */ memset(data, 0, sizeof(data)); history_idx = 0; history_initialized = 0; } void body_detect(void) { uint64_t motion_var; int motion_confidence; if (!body_detect_enable) return; update_motion_variance(); if (!history_initialized) { if (history_idx == window_size - 1) history_initialized = 1; return; } motion_var = get_motion_variance(); motion_confidence = calculate_motion_confidence(motion_var); switch (motion_state) { case BODY_DETECTION_OFF_BODY: if (motion_confidence > CONFIG_BODY_DETECTION_ON_BODY_CON) body_detect_change_state(BODY_DETECTION_ON_BODY, false); break; case BODY_DETECTION_ON_BODY: stationary_timeframe += 1; /* confidence exceeds the limit, reset time counting */ if (motion_confidence >= CONFIG_BODY_DETECTION_OFF_BODY_CON) stationary_timeframe = 0; /* if no motion for enough time, change state to off_body */ if (stationary_timeframe >= CONFIG_BODY_DETECTION_STATIONARY_DURATION * window_size) body_detect_change_state(BODY_DETECTION_OFF_BODY, false); break; } } void body_detect_set_enable(int enable) { body_detect_enable = enable; body_detect_change_state(BODY_DETECTION_ON_BODY, false); } int body_detect_get_enable(void) { return body_detect_enable; } #ifdef CONFIG_ACCEL_SPOOF_MODE void body_detect_set_spoof(int enable) { spoof_enable = enable; /* After disabling spoof mode, commit current state. */ if (!enable) body_detect_change_state(motion_state, false); } bool body_detect_get_spoof(void) { return spoof_enable; } #endif