/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * LED controls. */ #include "battery.h" #include "battery_pack.h" #include "charge_state.h" #include "common.h" #include "console.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "lightbar.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr) #define CPRINTF(format, args...) cprintf(CC_LIGHTBAR, format, ## args) #define CONSOLE_COMMAND_LIGHTBAR_HELP /******************************************************************************/ /* How to talk to the controller */ /******************************************************************************/ /* Since there's absolutely nothing we can do about it if an I2C access * isn't working, we're completely ignoring any failures. */ static const uint8_t i2c_addr[] = { 0x54, 0x56 }; static inline void controller_write(int ctrl_num, uint8_t reg, uint8_t val) { ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr); i2c_write8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, val); } static inline uint8_t controller_read(int ctrl_num, uint8_t reg) { int val = 0; ctrl_num = ctrl_num % ARRAY_SIZE(i2c_addr); i2c_read8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, &val); return val; } /******************************************************************************/ /* Controller details. We have an ADP8861 and and ADP8863, but we can treat * them identically for our purposes */ /******************************************************************************/ /* We need to limit the total current per ISC to no more than 20mA (5mA per * color LED, but we have four LEDs in parallel on each ISC). Any more than * that runs the risk of damaging the LED component. A value of 0x67 is as high * as we want (assuming Square Law), but the blue LED is the least bright, so * I've lowered the other colors until they all appear approximately equal * brightness when full on. That's still pretty bright and a lot of current * drain on the battery, so we'll probably rarely go that high. */ #define MAX_RED 0x5c #define MAX_GREEN 0x30 #define MAX_BLUE 0x67 /* How many LEDs do we have? */ #define NUM_LEDS 4 /* How we'd like to see the driver chips initialized. The controllers have some * auto-cycling capability, but it's not much use for our purposes. For now, * we'll just control all color changes actively. */ struct initdata_s { uint8_t reg; uint8_t val; }; static const struct initdata_s init_vals[] = { {0x04, 0x00}, /* no backlight function */ {0x05, 0x3f}, /* xRGBRGB per chip */ {0x0f, 0x01}, /* square law looks better */ {0x10, 0x3f}, /* enable independent LEDs */ {0x11, 0x00}, /* no auto cycling */ {0x12, 0x00}, /* no auto cycling */ {0x13, 0x00}, /* instant fade in/out */ {0x14, 0x00}, /* not using LED 7 */ {0x15, 0x00}, /* current for LED 6 (blue) */ {0x16, 0x00}, /* current for LED 5 (red) */ {0x17, 0x00}, /* current for LED 4 (green) */ {0x18, 0x00}, /* current for LED 3 (blue) */ {0x19, 0x00}, /* current for LED 2 (red) */ {0x1a, 0x00}, /* current for LED 1 (green) */ }; static void set_from_array(const struct initdata_s *data, int count) { int i; for (i = 0; i < count; i++) { controller_write(0, data[i].reg, data[i].val); controller_write(1, data[i].reg, data[i].val); } } /* Controller register lookup tables. */ static const uint8_t led_to_ctrl[] = { 0, 0, 1, 1 }; static const uint8_t led_to_isc[] = { 0x15, 0x18, 0x15, 0x18 }; /* Scale 0-255 into max value */ static inline uint8_t scale_abs(int val, int max) { return (val * max)/255 + max/256; } /* It will often be simpler to provide an overall brightness control. */ int brightness = 0x80; /* So that we can make brightness changes happen instantly, we need to track * the current values. The values in the controllers aren't very helpful. */ static uint8_t current[NUM_LEDS][3]; /* Scale 0-255 by brightness */ static inline uint8_t scale(int val, int max) { return scale_abs((val * brightness)/255, max); } static void lightbar_init_vals(void) { CPRINTF("[%T LB_init_vals]\n"); set_from_array(init_vals, ARRAY_SIZE(init_vals)); memset(current, 0, sizeof(current)); } /* Helper function. */ static void setrgb(int led, int red, int green, int blue) { int ctrl, bank; current[led][0] = red; current[led][1] = green; current[led][2] = blue; ctrl = led_to_ctrl[led]; bank = led_to_isc[led]; controller_write(ctrl, bank, scale(blue, MAX_BLUE)); controller_write(ctrl, bank+1, scale(red, MAX_RED)); controller_write(ctrl, bank+2, scale(green, MAX_GREEN)); } /******************************************************************************/ /* Basic LED control functions. */ /******************************************************************************/ static void lightbar_off(void) { CPRINTF("[%T LB_off]\n"); /* Just go into standby mode. No register values should change. */ controller_write(0, 0x01, 0x00); controller_write(1, 0x01, 0x00); } static void lightbar_on(void) { CPRINTF("[%T LB_on]\n"); /* Come out of standby mode. */ controller_write(0, 0x01, 0x20); controller_write(1, 0x01, 0x20); } /* LEDs are numbered 0-3, RGB values should be in 0-255. * If you specify too large an LED, it sets them all. */ static void lightbar_setrgb(int led, int red, int green, int blue) { int i; if (led >= NUM_LEDS) for (i = 0; i < NUM_LEDS; i++) setrgb(i, red, green, blue); else setrgb(led, red, green, blue); } static void lightbar_brightness(int newval) { int i; CPRINTF("[%T LB_bright 0x%02x]\n", newval); brightness = newval; for (i = 0; i < NUM_LEDS; i++) lightbar_setrgb(i, current[i][0], current[i][1], current[i][2]); } /******************************************************************************/ /* Major colors */ static const struct { uint8_t r, g, b; } testy[] = { {0xff, 0x00, 0x00}, {0x00, 0xff, 0x00}, {0x00, 0x00, 0xff}, {0xff, 0xff, 0x00}, /* The first four are Google colors */ {0x00, 0xff, 0xff}, {0xff, 0x00, 0xff}, {0xff, 0xff, 0xff}, }; /******************************************************************************/ /* Now for the pretty patterns */ /******************************************************************************/ /* Here's some state that we might want to maintain across sysjumps, just to * prevent the lightbar from flashing during normal boot as the EC jumps from * RO to RW. FIXME: This doesn't quite stop the problems. */ static struct { /* What patterns are we showing? */ enum lightbar_sequence cur_seq; enum lightbar_sequence prev_seq; /* Quantized battery charge level: 0=low 1=med 2=high 3=full. */ int battery_level; /* We'll pulse slightly faster when charging */ int battery_is_charging; } st; #define LB_SYSJUMP_TAG 0x4c42 /* "LB" */ static int lb_preserve_state(void) { system_add_jump_tag(LB_SYSJUMP_TAG, 0, sizeof(st), &st); return EC_SUCCESS; } DECLARE_HOOK(HOOK_SYSJUMP, lb_preserve_state, HOOK_PRIO_DEFAULT); static void lb_restore_state(void) { const uint8_t *old_state = 0; int size; old_state = system_get_jump_tag(LB_SYSJUMP_TAG, 0, &size); if (old_state && size == sizeof(st)) { memcpy(&st, old_state, size); } else { st.cur_seq = st.prev_seq = LIGHTBAR_S5; st.battery_level = 2; } CPRINTF("[%T LB state: %d %d - %d/%d]\n", st.cur_seq, st.prev_seq, st.battery_is_charging, st.battery_level); } /* Here's where we keep messages waiting to be delivered to lightbar task. If * more than one is sent before the task responds, we only want to deliver the * latest one. */ static uint32_t pending_msg; /* And here's the task event that we use to trigger delivery. */ #define PENDING_MSG 1 /* Interruptible delay */ #define WAIT_OR_RET(A) do { \ uint32_t msg = task_wait_event(A); \ if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) \ return PENDING_MSG; } while (0) /****************************************************************************/ /* Demo sequence */ struct rgb_s { uint8_t r, g, b; }; enum { COLOR_LOW, COLOR_MEDIUM, COLOR_HIGH, COLOR_FULL, COLOR_BLACK, }; static const struct rgb_s colors[] = { {0xff, 0x00, 0x00}, /* low = red */ {0xff, 0xff, 0x00}, /* med = yellow */ {0x00, 0x00, 0xff}, /* high = blue */ {0x00, 0xff, 0x00}, /* full = green */ {0x00, 0x00, 0x00}, /* black */ }; static int demo_mode; void demo_battery_level(int inc) { if ((!demo_mode) || (st.battery_level == COLOR_LOW && inc < 0) || (st.battery_level == COLOR_FULL && inc > 0)) return; st.battery_level += inc; CPRINTF("[%T LB demo: battery_level=%d]\n", st.battery_level); } void demo_is_charging(int ischarge) { if (!demo_mode) return; st.battery_is_charging = ischarge; CPRINTF("[%T LB demo: battery_is_charging=%d]\n", st.battery_is_charging); } void demo_brightness(int inc) { int b; if (!demo_mode) return; b = brightness + (inc * 16); if (b > 0xff) b = 0xff; else if (b < 0) b = 0; lightbar_brightness(b); } static int last_battery_is_charging; static int last_battery_level; static void get_battery_level(void) { int pct = 0; if (demo_mode) return; #ifdef CONFIG_TASK_POWERSTATE pct = charge_get_percent(); st.battery_is_charging = (PWR_STATE_DISCHARGE != charge_get_state()); #endif if (pct > LIGHTBAR_POWER_THRESHOLD_FULL) st.battery_level = COLOR_FULL; else if (pct > LIGHTBAR_POWER_THRESHOLD_HIGH) st.battery_level = COLOR_HIGH; else if (pct > LIGHTBAR_POWER_THRESHOLD_MEDIUM) st.battery_level = COLOR_MEDIUM; else st.battery_level = COLOR_LOW; } static struct { timestamp_t start_time; timestamp_t end_time; struct rgb_s prev; struct rgb_s next; } led_state[NUM_LEDS]; #define MSECS(a) (a * 1000) #define SEC(a) (a * 1000000) static const uint64_t transition_time = SEC(3); static const uint64_t transition_stagger[NUM_LEDS] = { MSECS(0), MSECS(200), MSECS(733), MSECS(450), }; static const int pulse_period[2] = { SEC(20), /* discharging */ SEC(10) }; /* charging */ static const int pulse_stagger[2][NUM_LEDS] = { { MSECS(0), MSECS(4800), MSECS(16000), MSECS(11000) }, /* discharging */ { MSECS(0), MSECS(2400), MSECS(8000), MSECS(5500) } /* charging */ }; static struct rgb_s tmp_color; static int tmp_percent; static void interpolate(timestamp_t now, int i) { int range, sofar; if (now.val <= led_state[i].start_time.val) { tmp_color = led_state[i].prev; tmp_percent = 0; return; } if (now.val >= led_state[i].end_time.val) { tmp_percent = 100; tmp_color = led_state[i].next; return; } range = (int)(led_state[i].end_time.val - led_state[i].start_time.val); sofar = (int)(now.val - led_state[i].start_time.val); tmp_percent = (sofar * 100) / range; tmp_color.r = ((100 - tmp_percent) * led_state[i].prev.r) / 100 + (tmp_percent * led_state[i].next.r) / 100; tmp_color.g = ((100 - tmp_percent) * led_state[i].prev.g) / 100 + (tmp_percent * led_state[i].next.g) / 100; tmp_color.b = ((100 - tmp_percent) * led_state[i].prev.b) / 100 + (tmp_percent * led_state[i].next.b) / 100; } /* 8-bit fixed-point sin(x). domain 0-PI == 0-127, range 0-1 == 0-255. * This is just the first half cycle. */ const uint8_t sin_table[] = { 0, 6, 13, 19, 25, 31, 37, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 103, 109, 115, 120, 126, 131, 136, 142, 147, 152, 157, 162, 167, 171, 176, 180, 185, 189, 193, 197, 201, 205, 208, 212, 215, 219, 222, 225, 228, 231, 233, 236, 238, 240, 242, 244, 246, 247, 249, 250, 251, 252, 253, 254, 254, 255, 255, 255, 255, 255, 254, 254, 253, 252, 251, 250, 249, 247, 246, 244, 242, 240, 238, 236, 233, 231, 228, 225, 222, 219, 215, 212, 208, 205, 201, 197, 193, 189, 185, 180, 176, 171, 167, 162, 157, 152, 147, 142, 136, 131, 126, 120, 115, 109, 103, 98, 92, 86, 80, 74, 68, 62, 56, 50, 44, 37, 31, 25, 19, 13, 6 }; /* This provides the other half. */ int sini(uint8_t i) { if (i < 128) return sin_table[i]; return -sin_table[i-128]; } static void pulse(timestamp_t now, int period_offset) { int t; uint8_t i; int j; /* Bound time to one cycle */ t = (now.le.lo + period_offset) % pulse_period[st.battery_is_charging]; /* Convert phase to 0-255 */ i = ((t >> 8) / (pulse_period[st.battery_is_charging] >> 16)); /* Compute sinusoidal for phase, as [-255:255] */ j = sini(i); j = j * sini((int)i * 3 / 2) / 255; j = j * sini((int)i * 16 / 10) / 255; /* Cut it down a bit if we're plugged in. */ j = j / (1 + st.battery_is_charging); /* Luminize current color using sinusoidal */ t = j + tmp_color.r; if (t > 255) tmp_color.r = 255; else if (t < 0) tmp_color.r = 0; else tmp_color.r = t; t = j + tmp_color.g; if (t > 255) tmp_color.g = 255; else if (t < 0) tmp_color.g = 0; else tmp_color.g = t; t = j + tmp_color.b; if (t > 255) tmp_color.b = 255; else if (t < 0) tmp_color.b = 0; else tmp_color.b = t; } /* CPU is fully on */ static uint32_t sequence_S0(void) { int i, tick, last_tick; timestamp_t start, now; start = get_time(); tick = last_tick = 0; lightbar_on(); /* start black, we'll fade in first thing */ lightbar_setrgb(NUM_LEDS, 0, 0, 0); for (i = 0; i < NUM_LEDS; i++) led_state[i].prev = colors[COLOR_BLACK]; last_battery_is_charging = !st.battery_is_charging; /* force update */ while (1) { now = get_time(); /* Only check the battery state every so often. The battery * charging task doesn't update as quickly as we do, and isn't * always valid for a bit after jumping from RO->RW. */ tick = (now.le.lo - start.le.lo) / SEC(1); if (tick % 4 == 3 && tick != last_tick) { get_battery_level(); last_tick = tick; } /* Has something changed? */ if (st.battery_is_charging != last_battery_is_charging || st.battery_level != last_battery_level) { /* yes */ for (i = 0; i < NUM_LEDS; i++) { led_state[i].start_time.val = now.val + transition_stagger[i]; led_state[i].end_time.val = led_state[i]. start_time.val + transition_time; led_state[i].prev = led_state[i].next; led_state[i].next = colors[st.battery_level]; } last_battery_is_charging = st.battery_is_charging; last_battery_level = st.battery_level; } /* Figure out what colors to show now */ for (i = 0; i < NUM_LEDS; i++) { /* Compute transition between prev and next colors. */ interpolate(now, i); /* Pulse sinusoidally */ pulse(now, pulse_stagger[st.battery_is_charging][i]); /* Show it */ lightbar_setrgb(i, tmp_color.r, tmp_color.g, tmp_color.b); } WAIT_OR_RET(MSECS(15)); } return 0; } /* CPU is off */ static uint32_t sequence_S5(void) { /* Just wait forever. */ lightbar_off(); WAIT_OR_RET(-1); return 0; } /* CPU is powering up. The lightbar loses power when the CPU is in S5, so this * might not be useful. */ static uint32_t sequence_S5S3(void) { /* The controllers need 100us after power is applied before they'll * respond. Don't return early, because we still want to initialize the * lightbar even if another message comes along while we're waiting. */ usleep(100); lightbar_init_vals(); /* For now, do something to indicate this transition. * We might see it. */ lightbar_on(); lightbar_setrgb(NUM_LEDS, 0, 0, 0); WAIT_OR_RET(500000); return 0; } /* CPU is going to sleep */ static uint32_t sequence_S0S3(void) { int i; lightbar_on(); for (i = 0; i < NUM_LEDS; i++) { lightbar_setrgb(i, 0, 0, 0); WAIT_OR_RET(200000); } return 0; } /* CPU is sleeping */ static uint32_t sequence_S3(void) { int r, g, b; int i; lightbar_off(); lightbar_init_vals(); lightbar_setrgb(NUM_LEDS, 0, 0, 0); while (1) { WAIT_OR_RET(SEC(15)); get_battery_level(); lightbar_on(); r = colors[st.battery_level].r; g = colors[st.battery_level].g; b = colors[st.battery_level].b; for (i = 0; i < 255; i += 5) { lightbar_setrgb(NUM_LEDS, (r * i) / 255, (g * i) / 255, (b * i) / 255); WAIT_OR_RET(15000); } for (i = 255; i > 0; i -= 5) { lightbar_setrgb(NUM_LEDS, (r * i) / 255, (g * i) / 255, (b * i) / 255); WAIT_OR_RET(15000); } lightbar_setrgb(NUM_LEDS, 0, 0, 0); lightbar_off(); } return 0; } /* CPU is waking from sleep */ static uint32_t sequence_S3S0(void) { int i; lightbar_init_vals(); lightbar_on(); for (i = 0; i < NUM_LEDS; i++) { lightbar_setrgb(i, testy[i].r, testy[i].g, testy[i].b); WAIT_OR_RET(200000); } return 0; } /* Sleep to off. */ static uint32_t sequence_S3S5(void) { /* For now, do something to indicate this transition. * We might see it. */ lightbar_off(); WAIT_OR_RET(500000); return 0; } /* Used by factory. */ static uint32_t sequence_TEST_inner(void) { int i, j, k, r, g, b; int kmax = 254; int kstep = 8; lightbar_init_vals(); lightbar_on(); for (i = 0; i < ARRAY_SIZE(testy); i++) { for (k = 0; k <= kmax; k += kstep) { for (j = 0; j < NUM_LEDS; j++) { r = testy[i].r ? k : 0; g = testy[i].g ? k : 0; b = testy[i].b ? k : 0; lightbar_setrgb(j, r, g, b); } WAIT_OR_RET(10000); } for (k = kmax; k >= 0; k -= kstep) { for (j = 0; j < NUM_LEDS; j++) { r = testy[i].r ? k : 0; g = testy[i].g ? k : 0; b = testy[i].b ? k : 0; lightbar_setrgb(j, r, g, b); } WAIT_OR_RET(10000); } } return 0; } static uint32_t sequence_TEST(void) { int tmp; uint32_t r; tmp = brightness; brightness = 255; r = sequence_TEST_inner(); brightness = tmp; return r; } /* This uses the auto-cycling features of the controllers to make a semi-random * pattern of slowly fading colors. This is interesting only because it doesn't * require any effort from the EC. */ static uint32_t sequence_PULSE(void) { uint32_t msg; int r = scale(255, MAX_RED); int g = scale(255, MAX_BLUE); int b = scale(255, MAX_GREEN); struct initdata_s pulse_vals[] = { {0x11, 0xce}, {0x12, 0x67}, {0x13, 0xef}, {0x15, b}, {0x16, r}, {0x17, g}, {0x18, b}, {0x19, r}, {0x1a, g}, }; lightbar_init_vals(); lightbar_on(); set_from_array(pulse_vals, ARRAY_SIZE(pulse_vals)); controller_write(1, 0x13, 0xcd); /* this one's different */ /* Not using WAIT_OR_RET() here, because we want to clean up when we're * done. The only way out is to get a message. */ msg = task_wait_event(-1); lightbar_init_vals(); return TASK_EVENT_CUSTOM(msg); } /* The host CPU (or someone) is going to poke at the lightbar directly, so we * don't want the EC messing with it. We'll just sit here and ignore all * other messages until we're told to continue. */ static uint32_t sequence_STOP(void) { uint32_t msg; do { msg = TASK_EVENT_CUSTOM(task_wait_event(-1)); CPRINTF("[%T LB_stop got pending_msg %d]\n", pending_msg); } while (msg != PENDING_MSG || pending_msg != LIGHTBAR_RUN); /* FIXME: What should we do if the host shuts down? */ CPRINTF("[%T LB_stop->running]\n"); return 0; } /* Telling us to run when we're already running should do nothing. */ static uint32_t sequence_RUN(void) { return 0; } /* We shouldn't come here, but if we do it shouldn't hurt anything */ static uint32_t sequence_ERROR(void) { lightbar_init_vals(); lightbar_on(); lightbar_setrgb(0, 255, 255, 255); lightbar_setrgb(1, 255, 0, 255); lightbar_setrgb(2, 0, 255, 255); lightbar_setrgb(3, 255, 255, 255); WAIT_OR_RET(10000000); return 0; } static const struct { uint8_t led; uint8_t r, g, b; unsigned int delay; } konami[] = { {1, 0xff, 0xff, 0x00, 0}, {2, 0xff, 0xff, 0x00, 100000}, {1, 0x00, 0x00, 0x00, 0}, {2, 0x00, 0x00, 0x00, 100000}, {1, 0xff, 0xff, 0x00, 0}, {2, 0xff, 0xff, 0x00, 100000}, {1, 0x00, 0x00, 0x00, 0}, {2, 0x00, 0x00, 0x00, 100000}, {0, 0x00, 0x00, 0xff, 0}, {3, 0x00, 0x00, 0xff, 100000}, {0, 0x00, 0x00, 0x00, 0}, {3, 0x00, 0x00, 0x00, 100000}, {0, 0x00, 0x00, 0xff, 0}, {3, 0x00, 0x00, 0xff, 100000}, {0, 0x00, 0x00, 0x00, 0}, {3, 0x00, 0x00, 0x00, 100000}, {0, 0xff, 0x00, 0x00, 0}, {1, 0xff, 0x00, 0x00, 100000}, {0, 0x00, 0x00, 0x00, 0}, {1, 0x00, 0x00, 0x00, 100000}, {2, 0x00, 0xff, 0x00, 0}, {3, 0x00, 0xff, 0x00, 100000}, {2, 0x00, 0x00, 0x00, 0}, {3, 0x00, 0x00, 0x00, 100000}, {0, 0xff, 0x00, 0x00, 0}, {1, 0xff, 0x00, 0x00, 100000}, {0, 0x00, 0x00, 0x00, 0}, {1, 0x00, 0x00, 0x00, 100000}, {2, 0x00, 0xff, 0x00, 0}, {3, 0x00, 0xff, 0x00, 100000}, {2, 0x00, 0x00, 0x00, 0}, {3, 0x00, 0x00, 0x00, 100000}, {0, 0x00, 0xff, 0xff, 0}, {2, 0x00, 0xff, 0xff, 100000}, {0, 0x00, 0x00, 0x00, 0}, {2, 0x00, 0x00, 0x00, 150000}, {1, 0xff, 0x00, 0xff, 0}, {3, 0xff, 0x00, 0xff, 100000}, {1, 0x00, 0x00, 0x00, 0}, {3, 0x00, 0x00, 0x00, 250000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, {4, 0xff, 0xff, 0xff, 100000}, {4, 0x00, 0x00, 0x00, 100000}, }; static uint32_t sequence_KONAMI(void) { int i; int tmp; lightbar_init_vals(); lightbar_on(); tmp = brightness; brightness = 255; for (i = 0; i < ARRAY_SIZE(konami); i++) { lightbar_setrgb(konami[i].led, konami[i].r, konami[i].g, konami[i].b); if (konami[i].delay) usleep(konami[i].delay); } brightness = tmp; return 0; } /****************************************************************************/ /* The main lightbar task. It just cycles between various pretty patterns. */ /****************************************************************************/ /* Link each sequence with a command to invoke it. */ struct lightbar_cmd_t { const char * const string; uint32_t (*sequence)(void); }; #define LBMSG(state) { #state, sequence_##state } #include "lightbar_msg_list.h" static struct lightbar_cmd_t lightbar_cmds[] = { LIGHTBAR_MSG_LIST }; #undef LBMSG void lightbar_task(void) { uint32_t msg; CPRINTF("[%T LB task starting]\n"); lb_restore_state(); while (1) { CPRINTF("[%T LB task %d = %s]\n", st.cur_seq, lightbar_cmds[st.cur_seq].string); msg = lightbar_cmds[st.cur_seq].sequence(); if (TASK_EVENT_CUSTOM(msg) == PENDING_MSG) { CPRINTF("[%T LB msg %d = %s]\n", pending_msg, lightbar_cmds[pending_msg].string); st.prev_seq = st.cur_seq; st.cur_seq = pending_msg; } else { CPRINTF("[%T LB msg 0x%x]\n", msg); switch (st.cur_seq) { case LIGHTBAR_S5S3: st.cur_seq = LIGHTBAR_S3; break; case LIGHTBAR_S3S0: st.cur_seq = LIGHTBAR_S0; break; case LIGHTBAR_S0S3: st.cur_seq = LIGHTBAR_S3; break; case LIGHTBAR_S3S5: st.cur_seq = LIGHTBAR_S5; break; case LIGHTBAR_TEST: case LIGHTBAR_STOP: case LIGHTBAR_RUN: case LIGHTBAR_ERROR: case LIGHTBAR_KONAMI: st.cur_seq = st.prev_seq; default: break; } } } } /* Function to request a preset sequence from the lightbar task. */ void lightbar_sequence(enum lightbar_sequence num) { if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) { CPRINTF("[%T LB_seq %d = %s]\n", num, lightbar_cmds[num].string); pending_msg = num; task_set_event(TASK_ID_LIGHTBAR, TASK_EVENT_WAKE | TASK_EVENT_CUSTOM(PENDING_MSG), 0); } else CPRINTF("[%T LB_seq %d - ignored]\n", num); } /****************************************************************************/ /* Get notifications from other parts of the system */ static int lightbar_startup(void) { lightbar_sequence(LIGHTBAR_S5S3); return EC_SUCCESS; } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT); static int lightbar_resume(void) { lightbar_sequence(LIGHTBAR_S3S0); return EC_SUCCESS; } DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT); static int lightbar_suspend(void) { lightbar_sequence(LIGHTBAR_S0S3); return EC_SUCCESS; } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT); static int lightbar_shutdown(void) { lightbar_sequence(LIGHTBAR_S3S5); return EC_SUCCESS; } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT); /****************************************************************************/ /* Generic command-handling (should work the same for both console & LPC) */ /****************************************************************************/ static const uint8_t dump_reglist[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a }; static void do_cmd_dump(struct ec_params_lightbar_cmd *ptr) { int i; uint8_t reg; BUILD_ASSERT(ARRAY_SIZE(dump_reglist) == ARRAY_SIZE(ptr->out.dump.vals)); for (i = 0; i < ARRAY_SIZE(dump_reglist); i++) { reg = dump_reglist[i]; ptr->out.dump.vals[i].reg = reg; ptr->out.dump.vals[i].ic0 = controller_read(0, reg); ptr->out.dump.vals[i].ic1 = controller_read(1, reg); } } static void do_cmd_rgb(uint8_t led, uint8_t red, uint8_t green, uint8_t blue) { int i; if (led >= NUM_LEDS) for (i = 0; i < NUM_LEDS; i++) lightbar_setrgb(i, red, green, blue); else lightbar_setrgb(led, red, green, blue); } /****************************************************************************/ /* Host commands via LPC bus */ /****************************************************************************/ static int lpc_cmd_lightbar(struct host_cmd_handler_args *args) { struct ec_params_lightbar_cmd *ptr = args->response; /* * TODO: (crosbug.com/p/11277) Now that params and response are * separate pointers, they need to be propagated to the lightbar * sub-commands. For now, just copy params to response so the * sub-commands above will work unchanged. */ if (args->params != args->response) memcpy(args->response, args->params, args->params_size); switch (ptr->in.cmd) { case LIGHTBAR_CMD_DUMP: do_cmd_dump(ptr); args->response_size = sizeof(ptr->out.dump); break; case LIGHTBAR_CMD_OFF: lightbar_off(); break; case LIGHTBAR_CMD_ON: lightbar_on(); break; case LIGHTBAR_CMD_INIT: lightbar_init_vals(); break; case LIGHTBAR_CMD_BRIGHTNESS: lightbar_brightness(ptr->in.brightness.num); break; case LIGHTBAR_CMD_SEQ: lightbar_sequence(ptr->in.seq.num); break; case LIGHTBAR_CMD_REG: controller_write(ptr->in.reg.ctrl, ptr->in.reg.reg, ptr->in.reg.value); break; case LIGHTBAR_CMD_RGB: do_cmd_rgb(ptr->in.rgb.led, ptr->in.rgb.red, ptr->in.rgb.green, ptr->in.rgb.blue); break; case LIGHTBAR_CMD_GET_SEQ: ptr->out.get_seq.num = st.cur_seq; args->response_size = sizeof(ptr->out.get_seq); break; case LIGHTBAR_CMD_DEMO: demo_mode = ptr->in.demo.num ? 1 : 0; CPRINTF("[%T LB_demo %d]\n", demo_mode); break; default: CPRINTF("[%T LB bad cmd 0x%x]\n", ptr->in.cmd); return EC_RES_INVALID_PARAM; } return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD, lpc_cmd_lightbar, EC_VER_MASK(0)); /****************************************************************************/ /* EC console commands */ /****************************************************************************/ #ifdef CONSOLE_COMMAND_LIGHTBAR_HELP static int help(const char *cmd) { ccprintf("Usage:\n"); ccprintf(" %s - dump all regs\n", cmd); ccprintf(" %s off - enter standby\n", cmd); ccprintf(" %s on - leave standby\n", cmd); ccprintf(" %s init - load default vals\n", cmd); ccprintf(" %s brightness NUM - set intensity (0-ff)\n", cmd); ccprintf(" %s seq [NUM|SEQUENCE] - run given pattern" " (no arg for list)\n", cmd); ccprintf(" %s CTRL REG VAL - set LED controller regs\n", cmd); ccprintf(" %s LED RED GREEN BLUE - set color manually" " (LED=4 for all)\n", cmd); ccprintf(" %s demo [0|1] - turn demo mode on & off\n", cmd); return EC_SUCCESS; } #endif static uint8_t find_msg_by_name(const char *str) { uint8_t i; for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++) if (!strcasecmp(str, lightbar_cmds[i].string)) return i; return LIGHTBAR_NUM_SEQUENCES; } static void show_msg_names(void) { int i; ccprintf("Sequences:"); for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++) ccprintf(" %s", lightbar_cmds[i].string); ccprintf("\nCurrent = 0x%x %s\n", st.cur_seq, lightbar_cmds[st.cur_seq].string); } static int command_lightbar(int argc, char **argv) { int i; uint8_t num; struct ec_params_lightbar_cmd params; if (1 == argc) { /* no args = dump 'em all */ do_cmd_dump(¶ms); for (i = 0; i < ARRAY_SIZE(dump_reglist); i++) ccprintf(" %02x %02x %02x\n", params.out.dump.vals[i].reg, params.out.dump.vals[i].ic0, params.out.dump.vals[i].ic1); return EC_SUCCESS; } if (argc == 2 && !strcasecmp(argv[1], "init")) { lightbar_init_vals(); return EC_SUCCESS; } if (argc == 2 && !strcasecmp(argv[1], "off")) { lightbar_off(); return EC_SUCCESS; } if (argc == 2 && !strcasecmp(argv[1], "on")) { lightbar_on(); return EC_SUCCESS; } if (argc == 3 && !strcasecmp(argv[1], "brightness")) { char *e; num = 0xff & strtoi(argv[2], &e, 16); lightbar_brightness(num); return EC_SUCCESS; } if (argc == 3 && !strcasecmp(argv[1], "demo")) { if (!strcasecmp(argv[2], "on") || argv[2][0] == '1') demo_mode = 1; else if (!strcasecmp(argv[2], "off") || argv[2][0] == '0') demo_mode = 0; else return EC_ERROR_PARAM1; ccprintf("demo mode is %s\n", demo_mode ? "on" : "off"); return EC_SUCCESS; } if (argc >= 2 && !strcasecmp(argv[1], "seq")) { char *e; uint8_t num; if (argc == 2) { show_msg_names(); return 0; } num = 0xff & strtoi(argv[2], &e, 16); if (*e) num = find_msg_by_name(argv[2]); if (num >= LIGHTBAR_NUM_SEQUENCES) return EC_ERROR_PARAM2; lightbar_sequence(num); return EC_SUCCESS; } if (argc == 4) { char *e; uint8_t ctrl, reg, val; ctrl = 0xff & strtoi(argv[1], &e, 16); reg = 0xff & strtoi(argv[2], &e, 16); val = 0xff & strtoi(argv[3], &e, 16); controller_write(ctrl, reg, val); return EC_SUCCESS; } if (argc == 5) { char *e; uint8_t led, r, g, b; led = strtoi(argv[1], &e, 16); r = strtoi(argv[2], &e, 16); g = strtoi(argv[3], &e, 16); b = strtoi(argv[4], &e, 16); do_cmd_rgb(led, r, g, b); return EC_SUCCESS; } #ifdef CONSOLE_COMMAND_LIGHTBAR_HELP help(argv[0]); #endif return EC_ERROR_INVAL; } DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar, "[on | off | init | brightness | seq] | [ctrl reg val]", "Get/set lightbar state", NULL);