/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Motion sense module to read from various motion sensors. */ #include "accelgyro.h" #include "chipset.h" #include "common.h" #include "console.h" #include "gesture.h" #include "hooks.h" #include "host_command.h" #include "lid_angle.h" #include "math_util.h" #include "motion_lid.h" #include "motion_sense.h" #include "power.h" #include "timer.h" #include "task.h" #include "util.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_MOTION_LID, outstr) #define CPRINTS(format, args...) cprints(CC_MOTION_LID, format, ## args) #define CPRINTF(format, args...) cprintf(CC_MOTION_LID, format, ## args) /* Current acceleration vectors and current lid angle. */ static int lid_angle_deg; static int lid_angle_is_reliable; /* * Angle threshold for how close the hinge aligns with gravity before * considering the lid angle calculation unreliable. For computational * efficiency, value is given unit-less, so if you want the threshold to be * at 15 degrees, the value would be cos(15 deg) = 0.96593. */ #define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD FLOAT_TO_FP(0.96593) /* * Define the accelerometer orientation matrices based on the standard * reference frame in use (note: accel data is converted to standard ref * frame before calculating lid angle). */ #ifdef CONFIG_ACCEL_STD_REF_FRAME_OLD const struct accel_orientation acc_orient = { /* Hinge aligns with y axis. */ .rot_hinge_90 = { { 0, 0, FLOAT_TO_FP(1)}, { 0, FLOAT_TO_FP(1), 0}, { FLOAT_TO_FP(-1), 0, 0} }, .rot_hinge_180 = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }, .hinge_axis = {0, 1, 0}, }; #else const struct accel_orientation acc_orient = { /* Hinge aligns with x axis. */ .rot_hinge_90 = { { FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)}, { 0, FLOAT_TO_FP(-1), 0} }, .rot_hinge_180 = { { FLOAT_TO_FP(1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }, .hinge_axis = {1, 0, 0}, }; #endif /* Pointer to constant acceleration orientation data. */ const struct accel_orientation * const p_acc_orient = &acc_orient; struct motion_sensor_t *accel_base = &motion_sensors[CONFIG_LID_ANGLE_SENSOR_BASE]; struct motion_sensor_t *accel_lid = &motion_sensors[CONFIG_LID_ANGLE_SENSOR_LID]; /** * Calculate the lid angle using two acceleration vectors, one recorded in * the base and one in the lid. * * @param base Base accel vector * @param lid Lid accel vector * @param lid_angle Pointer to location to store lid angle result * * @return flag representing if resulting lid angle calculation is reliable. */ static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid, int *lid_angle) { vector_3_t v; fp_t ang_lid_to_base, cos_lid_90, cos_lid_270; fp_t lid_to_base, base_to_hinge; fp_t denominator; int reliable = 1; /* * The angle between lid and base is: * acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2)) * where cad() is the cosine_of_angle_diff() function. * * Make sure to check for divide by 0. */ lid_to_base = cosine_of_angle_diff(base, lid); base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis); /* * If hinge aligns too closely with gravity, then result may be * unreliable. */ if (fp_abs(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD) reliable = 0; base_to_hinge = fp_sq(base_to_hinge); /* Check divide by 0. */ denominator = FLOAT_TO_FP(1.0) - base_to_hinge; if (fp_abs(denominator) < FLOAT_TO_FP(0.01)) { *lid_angle = 0; return 0; } ang_lid_to_base = arc_cos(fp_div(lid_to_base - base_to_hinge, denominator)); /* * The previous calculation actually has two solutions, a positive and * a negative solution. To figure out the sign of the answer, calculate * the cosine of the angle between the actual lid angle and the * estimated vector if the lid were open to 90 deg, cos_lid_90. Also * calculate the cosine of the angle between the actual lid angle and * the estimated vector if the lid were open to 270 deg, * cos_lid_270. The smaller of the two angles represents which one is * closer. If the lid is closer to the estimated 270 degree vector then * the result is negative, otherwise it is positive. */ rotate(base, p_acc_orient->rot_hinge_90, v); cos_lid_90 = cosine_of_angle_diff(v, lid); rotate(v, p_acc_orient->rot_hinge_180, v); cos_lid_270 = cosine_of_angle_diff(v, lid); /* * Note that cos_lid_90 and cos_lid_270 are not in degrees, because * the arc_cos() was never performed. But, since arc_cos() is * monotonically decreasing, we can do this comparison without ever * taking arc_cos(). But, since the function is monotonically * decreasing, the logic of this comparison is reversed. */ if (cos_lid_270 > cos_lid_90) ang_lid_to_base = -ang_lid_to_base; /* Place lid angle between 0 and 360 degrees. */ if (ang_lid_to_base < 0) ang_lid_to_base += FLOAT_TO_FP(360); /* * Round to nearest int by adding 0.5. Note, only works because lid * angle is known to be positive. */ *lid_angle = FP_TO_INT(ang_lid_to_base + FLOAT_TO_FP(0.5)); return reliable; } int motion_lid_get_angle(void) { if (lid_angle_is_reliable) return lid_angle_deg; else return LID_ANGLE_UNRELIABLE; } /* * Calculate lid angle and massage the results */ void motion_lid_calc(void) { #ifndef CONFIG_ACCEL_STD_REF_FRAME_OLD /* * rotate lid vector by 180 deg to be in the right coordinate frame * because calculate_lid_angle assumes when the lid is closed, that * the lid and base accelerometer data matches */ vector_3_t lid = { accel_lid->xyz[X], accel_lid->xyz[Y] * -1, accel_lid->xyz[Z] * -1}; /* Calculate angle of lid accel. */ lid_angle_is_reliable = calculate_lid_angle( accel_base->xyz, lid, &lid_angle_deg); #else /* Calculate angle of lid accel. */ lid_angle_is_reliable = calculate_lid_angle( accel_base->xyz, accel_lid->xyz, &lid_angle_deg); #endif #ifdef CONFIG_LID_ANGLE_UPDATE lid_angle_update(motion_lid_get_angle()); #endif } /*****************************************************************************/ /* Host commands */ int host_cmd_motion_lid(struct host_cmd_handler_args *args) { const struct ec_params_motion_sense *in = args->params; struct ec_response_motion_sense *out = args->response; switch (in->cmd) { case MOTIONSENSE_CMD_KB_WAKE_ANGLE: #ifdef CONFIG_LID_ANGLE_UPDATE /* Set new keyboard wake lid angle if data arg has value. */ if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE) lid_angle_set_wake_angle(in->kb_wake_angle.data); out->kb_wake_angle.ret = lid_angle_get_wake_angle(); #else out->kb_wake_angle.ret = 0; #endif args->response_size = sizeof(out->kb_wake_angle); break; case MOTIONSENSE_CMD_LID_ANGLE: #ifdef CONFIG_LID_ANGLE out->lid_angle.value = motion_lid_get_angle(); args->response_size = sizeof(out->lid_angle); #else return EC_RES_INVALID_PARAM; #endif break; default: return EC_RES_INVALID_PARAM; } return EC_RES_SUCCESS; }