/* Copyright 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "atomic.h" #include "charge_manager.h" #include "common.h" #include "console.h" #include "cros_version.h" #include "ec_commands.h" #include "flash.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "mkbp_event.h" #include "registers.h" #include "rsa.h" #include "sha256.h" #include "system.h" #include "task.h" #include "tcpm/tcpm.h" #include "timer.h" #include "util.h" #include "usb_api.h" #include "usb_common.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "usbc_ppc.h" #ifdef CONFIG_COMMON_RUNTIME #define CPRINTS(format, args...) cprints(CC_USBPD, format, ##args) #define CPRINTF(format, args...) cprintf(CC_USBPD, format, ##args) #else #define CPRINTS(format, args...) #define CPRINTF(format, args...) #endif /* * This file is currently only used for TCPMv1, and would need changes before * being used for TCPMv2. One example: PD_FLAGS_* are TCPMv1 only. */ #ifndef CONFIG_USB_PD_TCPMV1 #error This file must only be used with TCPMv1 #endif static int rw_flash_changed = 1; __overridable void pd_check_pr_role(int port, enum pd_power_role pr_role, int flags) { /* * If partner is dual-role power and dualrole toggling is on, consider * if a power swap is necessary. */ if ((flags & PD_FLAGS_PARTNER_DR_POWER) && pd_get_dual_role(port) == PD_DRP_TOGGLE_ON) { /* * If we are a sink and partner is not unconstrained, then * swap to become a source. If we are source and partner is * unconstrained, swap to become a sink. */ int partner_unconstrained = flags & PD_FLAGS_PARTNER_UNCONSTR; if ((!partner_unconstrained && pr_role == PD_ROLE_SINK) || (partner_unconstrained && pr_role == PD_ROLE_SOURCE)) pd_request_power_swap(port); } } __overridable void pd_check_dr_role(int port, enum pd_data_role dr_role, int flags) { /* If UFP, try to switch to DFP */ if ((flags & PD_FLAGS_PARTNER_DR_DATA) && dr_role == PD_ROLE_UFP) pd_request_data_swap(port); } #ifdef CONFIG_MKBP_EVENT static int dp_alt_mode_entry_get_next_event(uint8_t *data) { return EC_SUCCESS; } DECLARE_EVENT_SOURCE(EC_MKBP_EVENT_DP_ALT_MODE_ENTERED, dp_alt_mode_entry_get_next_event); #endif /* CONFIG_MKBP_EVENT */ /* Last received source cap */ static uint32_t pd_src_caps[CONFIG_USB_PD_PORT_MAX_COUNT][PDO_MAX_OBJECTS]; static uint8_t pd_src_cap_cnt[CONFIG_USB_PD_PORT_MAX_COUNT]; const uint32_t * const pd_get_src_caps(int port) { return pd_src_caps[port]; } void pd_set_src_caps(int port, int cnt, uint32_t *src_caps) { int i; pd_src_cap_cnt[port] = cnt; for (i = 0; i < cnt; i++) pd_src_caps[port][i] = *src_caps++; } uint8_t pd_get_src_cap_cnt(int port) { return pd_src_cap_cnt[port]; } static struct pd_cable cable[CONFIG_USB_PD_PORT_MAX_COUNT]; enum pd_rev_type get_usb_pd_cable_revision(int port) { return cable[port].rev; } bool consume_sop_prime_repeat_msg(int port, uint8_t msg_id) { if (cable[port].last_sop_p_msg_id != msg_id) { cable[port].last_sop_p_msg_id = msg_id; return false; } CPRINTF("C%d SOP Prime repeat msg_id %d\n", port, msg_id); return true; } bool consume_sop_prime_prime_repeat_msg(int port, uint8_t msg_id) { if (cable[port].last_sop_p_p_msg_id != msg_id) { cable[port].last_sop_p_p_msg_id = msg_id; return false; } CPRINTF("C%d SOP Prime Prime repeat msg_id %d\n", port, msg_id); return true; } __maybe_unused static uint8_t is_sop_prime_ready(int port) { /* * Ref: USB PD 3.0 sec 2.5.4: When an Explicit Contract is in place the * VCONN Source (either the DFP or the UFP) can communicate with the * Cable Plug(s) using SOP’/SOP’’ Packets * * Ref: USB PD 2.0 sec 2.4.4: When an Explicit Contract is in place the * DFP (either the Source or the Sink) can communicate with the * Cable Plug(s) using SOP’/SOP” Packets. * Sec 3.6.11 : Before communicating with a Cable Plug a Port Should * ensure that it is the Vconn Source */ return (pd_get_vconn_state(port) && (IS_ENABLED(CONFIG_USB_PD_REV30) || (pd_get_data_role(port) == PD_ROLE_DFP))); } void reset_pd_cable(int port) { memset(&cable[port], 0, sizeof(cable[port])); cable[port].last_sop_p_msg_id = INVALID_MSG_ID_COUNTER; cable[port].last_sop_p_p_msg_id = INVALID_MSG_ID_COUNTER; } bool should_enter_usb4_mode(int port) { return IS_ENABLED(CONFIG_USB_PD_USB4) && cable[port].flags & CABLE_FLAGS_ENTER_USB_MODE; } void enable_enter_usb4_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_USB4)) cable[port].flags |= CABLE_FLAGS_ENTER_USB_MODE; } void disable_enter_usb4_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_USB4)) cable[port].flags &= ~CABLE_FLAGS_ENTER_USB_MODE; } #ifdef CONFIG_USB_PD_ALT_MODE #ifdef CONFIG_USB_PD_ALT_MODE_DFP static struct pd_discovery discovery[CONFIG_USB_PD_PORT_MAX_COUNT] [DISCOVERY_TYPE_COUNT]; static struct partner_active_modes partner_amodes[CONFIG_USB_PD_PORT_MAX_COUNT] [AMODE_TYPE_COUNT]; static bool is_vdo_present(int cnt, int index) { return cnt > index; } static bool is_modal(int port, int cnt, const uint32_t *payload) { return is_vdo_present(cnt, VDO_INDEX_IDH) && PD_IDH_IS_MODAL(payload[VDO_INDEX_IDH]); } static bool is_tbt_compat_mode(int port, int cnt, const uint32_t *payload) { /* * Ref: USB Type-C cable and connector specification * F.2.5 TBT3 Device Discover Mode Responses */ return is_vdo_present(cnt, VDO_INDEX_IDH) && PD_VDO_RESP_MODE_INTEL_TBT(payload[VDO_INDEX_IDH]); } static bool cable_supports_tbt_speed(int port) { enum tbt_compat_cable_speed tbt_cable_speed = get_tbt_cable_speed(port); return (tbt_cable_speed == TBT_SS_TBT_GEN3 || tbt_cable_speed == TBT_SS_U32_GEN1_GEN2); } static bool is_tbt_compat_enabled(int port) { return (IS_ENABLED(CONFIG_USB_PD_TBT_COMPAT_MODE) && (cable[port].flags & CABLE_FLAGS_TBT_COMPAT_ENABLE)); } static void enable_tbt_compat_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_TBT_COMPAT_MODE)) cable[port].flags |= CABLE_FLAGS_TBT_COMPAT_ENABLE; } static inline void disable_tbt_compat_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_TBT_COMPAT_MODE)) cable[port].flags &= ~CABLE_FLAGS_TBT_COMPAT_ENABLE; } static inline void limit_tbt_cable_speed(int port) { /* Cable flags are cleared when cable reset is called */ cable[port].flags |= CABLE_FLAGS_TBT_COMPAT_LIMIT_SPEED; } static inline bool is_limit_tbt_cable_speed(int port) { return !!(cable[port].flags & CABLE_FLAGS_TBT_COMPAT_LIMIT_SPEED); } static bool is_intel_svid(int port, enum tcpci_msg_type type) { int i; for (i = 0; i < discovery[port][type].svid_cnt; i++) { if (pd_get_svid(port, i, type) == USB_VID_INTEL) return true; } return false; } static inline bool is_usb4_mode_enabled(int port) { return (IS_ENABLED(CONFIG_USB_PD_USB4) && (cable[port].flags & CABLE_FLAGS_USB4_CAPABLE)); } static inline void enable_usb4_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_USB4)) cable[port].flags |= CABLE_FLAGS_USB4_CAPABLE; } static inline void disable_usb4_mode(int port) { if (IS_ENABLED(CONFIG_USB_PD_USB4)) cable[port].flags &= ~CABLE_FLAGS_USB4_CAPABLE; } /* * Ref: USB Type-C Cable and Connector Specification * Figure 5-1 USB4 Discovery and Entry Flow Model. * * Note: USB Type-C Cable and Connector Specification * doesn't include details for Revision 2 cables. * * Passive Cable * | * ----------------------------------- * | | * Revision 2 Revision 3 * USB Signalling USB Signalling * | | * ------------------ ------------------------- * | | | | | | | * USB2.0 USB3.1 USB3.1 USB3.2 USB4 USB3.2 USB2 * | Gen1 Gen1 Gen2 Gen2 Gen3 Gen1 | * | | | | | | Exit * -------- ------------ -------- USB4 * | | | Discovery. * Exit Is DFP Gen3 Capable? Enter USB4 * USB4 | with respective * Discovery. --- No ---|--- Yes --- cable speed. * | | * Enter USB4 with Is Cable TBT3 * respective cable | * speed. --- No ---|--- Yes --- * | | * Enter USB4 with Enter USB4 with * TBT Gen2 passive TBT Gen3 passive * cable. cable. * */ static bool is_cable_ready_to_enter_usb4(int port, int cnt) { /* TODO: USB4 enter mode for Active cables */ struct pd_discovery *disc = &discovery[port][TCPCI_MSG_SOP_PRIME]; if (IS_ENABLED(CONFIG_USB_PD_USB4) && (get_usb_pd_cable_type(port) == IDH_PTYPE_PCABLE) && is_vdo_present(cnt, VDO_INDEX_PTYPE_CABLE1)) { switch (cable[port].rev) { case PD_REV30: switch (disc->identity.product_t1.p_rev30.ss) { case USB_R30_SS_U40_GEN3: case USB_R30_SS_U32_U40_GEN1: return true; case USB_R30_SS_U32_U40_GEN2: /* Check if DFP is Gen 3 capable */ if (IS_ENABLED(CONFIG_USB_PD_TBT_GEN3_CAPABLE)) return false; return true; default: disable_usb4_mode(port); return false; } case PD_REV20: switch (disc->identity.product_t1.p_rev20.ss) { case USB_R20_SS_U31_GEN1_GEN2: /* Check if DFP is Gen 3 capable */ if (IS_ENABLED(CONFIG_USB_PD_TBT_GEN3_CAPABLE)) return false; return true; default: disable_usb4_mode(port); return false; } default: disable_usb4_mode(port); } } return false; } void pd_dfp_discovery_init(int port) { memset(&discovery[port], 0, sizeof(struct pd_discovery)); } void pd_dfp_mode_init(int port) { memset(&partner_amodes[port], 0, sizeof(partner_amodes[0])); } static int dfp_discover_ident(uint32_t *payload) { payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_IDENT); return 1; } static int dfp_discover_svids(uint32_t *payload) { payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID); return 1; } struct pd_discovery *pd_get_am_discovery_and_notify_access( int port, enum tcpci_msg_type type) { return (struct pd_discovery *)pd_get_am_discovery(port, type); } const struct pd_discovery *pd_get_am_discovery(int port, enum tcpci_msg_type type) { return &discovery[port][type]; } struct partner_active_modes * pd_get_partner_active_modes(int port, enum tcpci_msg_type type) { assert(type < AMODE_TYPE_COUNT); return &partner_amodes[port][type]; } /* Note: Enter mode flag is not needed by TCPMv1 */ void pd_set_dfp_enter_mode_flag(int port, bool set) { } /** * Return the discover alternate mode payload data * * @param port USB-C port number * @param payload Pointer to payload data to fill * @return 1 if valid SVID present else 0 */ static int dfp_discover_modes(int port, uint32_t *payload) { const struct pd_discovery *disc = pd_get_am_discovery(port, TCPCI_MSG_SOP); uint16_t svid = disc->svids[disc->svid_idx].svid; if (disc->svid_idx >= disc->svid_cnt) return 0; payload[0] = VDO(svid, 1, CMD_DISCOVER_MODES); return 1; } static bool is_usb4_vdo(int port, int cnt, uint32_t *payload) { enum idh_ptype ptype = PD_IDH_PTYPE(payload[VDO_I(IDH)]); if (IS_PD_IDH_UFP_PTYPE(ptype)) { /* * Ref: USB Type-C Cable and Connector Specification * Figure 5-1 USB4 Discovery and Entry Flow Model * Device USB4 VDO detection. */ return IS_ENABLED(CONFIG_USB_PD_USB4) && is_vdo_present(cnt, VDO_INDEX_PTYPE_UFP1_VDO) && PD_PRODUCT_IS_USB4(payload[VDO_INDEX_PTYPE_UFP1_VDO]); } return false; } static int process_am_discover_ident_sop(int port, int cnt, uint32_t head, uint32_t *payload, enum tcpci_msg_type *rtype) { pd_dfp_discovery_init(port); pd_dfp_mode_init(port); dfp_consume_identity(port, TCPCI_MSG_SOP, cnt, payload); if (IS_ENABLED(CONFIG_USB_PD_DECODE_SOP) && is_sop_prime_ready(port) && board_is_tbt_usb4_port(port)) { /* Enable USB4 mode if USB4 VDO present and port partner * supports USB Rev 3.0. */ if (is_usb4_vdo(port, cnt, payload) && PD_HEADER_REV(head) == PD_REV30) enable_usb4_mode(port); /* * Enable Thunderbolt-compatible mode if the modal operation is * supported. */ if (is_modal(port, cnt, payload)) enable_tbt_compat_mode(port); if (is_modal(port, cnt, payload) || is_usb4_vdo(port, cnt, payload)) { *rtype = TCPCI_MSG_SOP_PRIME; return dfp_discover_ident(payload); } } return dfp_discover_svids(payload); } static int process_am_discover_ident_sop_prime(int port, int cnt, uint32_t head, uint32_t *payload) { dfp_consume_identity(port, TCPCI_MSG_SOP_PRIME, cnt, payload); cable[port].rev = PD_HEADER_REV(head); /* * Enter USB4 mode if the cable supports USB4 operation and has USB4 * VDO. */ if (is_usb4_mode_enabled(port) && is_cable_ready_to_enter_usb4(port, cnt)) { enable_enter_usb4_mode(port); usb_mux_set_safe_mode(port); /* * To change the mode of operation from USB4 the port needs to * be reconfigured. * Ref: USB Type-C Cable and Connectot Spec section 5.4.4. */ disable_tbt_compat_mode(port); return 0; } /* * Disable Thunderbolt-compatible mode if the cable does not support * superspeed. */ if (is_tbt_compat_enabled(port) && get_tbt_cable_speed(port) < TBT_SS_U31_GEN1) disable_tbt_compat_mode(port); return dfp_discover_svids(payload); } static int process_am_discover_svids(int port, int cnt, uint32_t *payload, enum tcpci_msg_type sop, enum tcpci_msg_type *rtype) { /* * The pd_discovery structure stores SOP and SOP' discovery results * separately, but TCPMv1 depends on one-dimensional storage of SVIDs * and modes. Therefore, always use TCPCI_MSG_SOP in TCPMv1. */ dfp_consume_svids(port, sop, cnt, payload); /* * Ref: USB Type-C Cable and Connector Specification, * figure F-1: TBT3 Discovery Flow * * For USB4 mode if device or cable doesn't have Intel SVID, * disable Thunderbolt-Compatible mode directly enter USB4 mode * with USB3.2 Gen1/Gen2 speed. * * For Thunderbolt-compatible, check if 0x8087 is received for * Discover SVID SOP. If not, disable Thunderbolt-compatible mode * * If 0x8087 is not received for Discover SVID SOP' limit to TBT * passive Gen 2 cable. */ if (is_tbt_compat_enabled(port)) { bool intel_svid = is_intel_svid(port, sop); if (!intel_svid) { if (is_usb4_mode_enabled(port)) { disable_tbt_compat_mode(port); cable[port].cable_mode_resp.tbt_cable_speed = TBT_SS_U32_GEN1_GEN2; enable_enter_usb4_mode(port); usb_mux_set_safe_mode(port); return 0; } if (sop == TCPCI_MSG_SOP_PRIME) limit_tbt_cable_speed(port); else disable_tbt_compat_mode(port); } else if (sop == TCPCI_MSG_SOP) { *rtype = TCPCI_MSG_SOP_PRIME; return dfp_discover_svids(payload); } } return dfp_discover_modes(port, payload); } static int process_tbt_compat_discover_modes(int port, enum tcpci_msg_type sop, uint32_t *payload, enum tcpci_msg_type *rtype) { int rsize; /* Initialize transmit type to SOP */ *rtype = TCPCI_MSG_SOP; /* * For active cables, Enter mode: SOP', SOP'', SOP * Ref: USB Type-C Cable and Connector Specification, figure F-1: TBT3 * Discovery Flow and Section F.2.7 TBT3 Cable Enter Mode Command. */ if (sop == TCPCI_MSG_SOP_PRIME) { /* Store Discover Mode SOP' response */ cable[port].cable_mode_resp.raw_value = payload[1]; if (is_usb4_mode_enabled(port)) { /* * If Cable is not Thunderbolt Gen 3 * capable or Thunderbolt Gen1_Gen2 * capable, disable USB4 mode and * continue flow for * Thunderbolt-compatible mode */ if (cable_supports_tbt_speed(port)) { enable_enter_usb4_mode(port); usb_mux_set_safe_mode(port); return 0; } disable_usb4_mode(port); } /* * Send TBT3 Cable Enter Mode (SOP') for active cables, * otherwise send TBT3 Device Enter Mode (SOP). */ if (get_usb_pd_cable_type(port) == IDH_PTYPE_ACABLE) *rtype = TCPCI_MSG_SOP_PRIME; rsize = enter_tbt_compat_mode(port, *rtype, payload); } else { /* Store Discover Mode SOP response */ cable[port].dev_mode_resp.raw_value = payload[1]; if (is_limit_tbt_cable_speed(port)) { /* * Passive cable has Nacked for Discover SVID. * No need to do Discover modes of cable. * Enter into device Thunderbolt-compatible mode. */ rsize = enter_tbt_compat_mode(port, *rtype, payload); } else { /* Discover modes for SOP' */ discovery[port][TCPCI_MSG_SOP].svid_idx--; rsize = dfp_discover_modes(port, payload); *rtype = TCPCI_MSG_SOP_PRIME; } } return rsize; } static int obj_cnt_enter_tbt_compat_mode(int port, enum tcpci_msg_type sop, uint32_t *payload, enum tcpci_msg_type *rtype) { struct pd_discovery *disc = &discovery[port][TCPCI_MSG_SOP_PRIME]; /* Enter mode SOP' for active cables */ if (sop == TCPCI_MSG_SOP_PRIME) { /* Check if the cable has a SOP'' controller */ if (disc->identity.product_t1.a_rev20.sop_p_p) *rtype = TCPCI_MSG_SOP_PRIME_PRIME; return enter_tbt_compat_mode(port, *rtype, payload); } /* Enter Mode SOP'' for active cables with SOP'' controller */ if (sop == TCPCI_MSG_SOP_PRIME_PRIME) return enter_tbt_compat_mode(port, *rtype, payload); /* Update Mux state to Thunderbolt-compatible mode. */ set_tbt_compat_mode_ready(port); /* No response once device (and cable) acks */ return 0; } #endif /* CONFIG_USB_PD_ALT_MODE_DFP */ int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload, uint32_t head, enum tcpci_msg_type *rtype) { int cmd = PD_VDO_CMD(payload[0]); int cmd_type = PD_VDO_CMDT(payload[0]); int (*func)(int port, uint32_t *payload) = NULL; int rsize = 1; /* VDM header at a minimum */ #ifdef CONFIG_USB_PD_ALT_MODE_DFP enum tcpci_msg_type sop = PD_HEADER_GET_SOP(head); #endif /* Transmit SOP messages by default */ *rtype = TCPCI_MSG_SOP; payload[0] &= ~VDO_CMDT_MASK; *rpayload = payload; if (cmd_type == CMDT_INIT) { switch (cmd) { case CMD_DISCOVER_IDENT: func = svdm_rsp.identity; break; case CMD_DISCOVER_SVID: func = svdm_rsp.svids; break; case CMD_DISCOVER_MODES: func = svdm_rsp.modes; break; case CMD_ENTER_MODE: func = svdm_rsp.enter_mode; break; case CMD_DP_STATUS: if (svdm_rsp.amode) func = svdm_rsp.amode->status; break; case CMD_DP_CONFIG: if (svdm_rsp.amode) func = svdm_rsp.amode->config; break; case CMD_EXIT_MODE: func = svdm_rsp.exit_mode; break; #ifdef CONFIG_USB_PD_ALT_MODE_DFP case CMD_ATTENTION: /* * attention is only SVDM with no response * (just goodCRC) return zero here. */ dfp_consume_attention(port, payload); return 0; #endif default: CPRINTF("ERR:CMD:%d\n", cmd); rsize = 0; } if (func) rsize = func(port, payload); else /* not supported : NACK it */ rsize = 0; if (rsize >= 1) payload[0] |= VDO_CMDT(CMDT_RSP_ACK); else if (!rsize) { payload[0] |= VDO_CMDT(CMDT_RSP_NAK); rsize = 1; } else { payload[0] |= VDO_CMDT(CMDT_RSP_BUSY); rsize = 1; } payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port, TCPCI_MSG_SOP)); } else if (cmd_type == CMDT_RSP_ACK) { #ifdef CONFIG_USB_PD_ALT_MODE_DFP struct svdm_amode_data *modep; modep = pd_get_amode_data(port, TCPCI_MSG_SOP, PD_VDO_VID(payload[0])); #endif switch (cmd) { #ifdef CONFIG_USB_PD_ALT_MODE_DFP case CMD_DISCOVER_IDENT: /* Received a SOP' Discover Ident msg */ if (sop == TCPCI_MSG_SOP_PRIME) { rsize = process_am_discover_ident_sop_prime( port, cnt, head, payload); /* Received a SOP Discover Ident Message */ } else { rsize = process_am_discover_ident_sop( port, cnt, head, payload, rtype); } break; case CMD_DISCOVER_SVID: rsize = process_am_discover_svids(port, cnt, payload, sop, rtype); break; case CMD_DISCOVER_MODES: dfp_consume_modes(port, sop, cnt, payload); if (is_tbt_compat_enabled(port) && is_tbt_compat_mode(port, cnt, payload)) { rsize = process_tbt_compat_discover_modes( port, sop, payload, rtype); break; } rsize = dfp_discover_modes(port, payload); /* enter the default mode for DFP */ if (!rsize) { /* * Disabling Thunderbolt-Compatible mode if * discover mode response doesn't include Intel * SVID. */ disable_tbt_compat_mode(port); payload[0] = pd_dfp_enter_mode( port, TCPCI_MSG_SOP, 0, 0); if (payload[0]) rsize = 1; } break; case CMD_ENTER_MODE: if (is_tbt_compat_enabled(port)) { rsize = obj_cnt_enter_tbt_compat_mode( port, sop, payload, rtype); /* * Continue with PD flow if * Thunderbolt-compatible mode is disabled. */ } else if (!modep) { rsize = 0; } else { if (!modep->opos) pd_dfp_enter_mode(port, TCPCI_MSG_SOP, 0, 0); if (modep->opos) { rsize = modep->fx->status(port, payload); payload[0] |= PD_VDO_OPOS(modep->opos); } } break; case CMD_DP_STATUS: /* DP status response & UFP's DP attention have same payload */ dfp_consume_attention(port, payload); if (modep && modep->opos) rsize = modep->fx->config(port, payload); else rsize = 0; break; case CMD_DP_CONFIG: if (modep && modep->opos && modep->fx->post_config) modep->fx->post_config(port); /* no response after DFPs ack */ rsize = 0; break; case CMD_EXIT_MODE: /* no response after DFPs ack */ rsize = 0; break; #endif case CMD_ATTENTION: /* no response after DFPs ack */ rsize = 0; break; default: CPRINTF("ERR:CMD:%d\n", cmd); rsize = 0; } payload[0] |= VDO_CMDT(CMDT_INIT); payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port, TCPCI_MSG_SOP)); #ifdef CONFIG_USB_PD_ALT_MODE_DFP } else if (cmd_type == CMDT_RSP_BUSY) { switch (cmd) { case CMD_DISCOVER_IDENT: case CMD_DISCOVER_SVID: case CMD_DISCOVER_MODES: /* resend if its discovery */ rsize = 1; break; case CMD_ENTER_MODE: /* Error */ CPRINTF("ERR:ENTBUSY\n"); rsize = 0; break; case CMD_EXIT_MODE: rsize = 0; break; default: rsize = 0; } } else if (cmd_type == CMDT_RSP_NAK) { /* Passive cable Nacked for Discover SVID */ if (cmd == CMD_DISCOVER_SVID && is_tbt_compat_enabled(port) && sop == TCPCI_MSG_SOP_PRIME && get_usb_pd_cable_type(port) == IDH_PTYPE_PCABLE) { limit_tbt_cable_speed(port); rsize = dfp_discover_modes(port, payload); } else { rsize = 0; } #endif /* CONFIG_USB_PD_ALT_MODE_DFP */ } else { CPRINTF("ERR:CMDT:%d\n", cmd); /* do not answer */ rsize = 0; } return rsize; } #else int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload, uint32_t head, enum tcpci_msg_type *rtype) { return 0; } #endif /* CONFIG_USB_PD_ALT_MODE */ #define FW_RW_END \ (CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF + \ CONFIG_RW_SIZE) uint8_t *flash_hash_rw(void) { static struct sha256_ctx ctx; /* re-calculate RW hash when changed as its time consuming */ if (rw_flash_changed) { rw_flash_changed = 0; SHA256_init(&ctx); SHA256_update(&ctx, (void *)CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RW_MEM_OFF, CONFIG_RW_SIZE - RSANUMBYTES); return SHA256_final(&ctx); } else { return ctx.buf; } } void pd_get_info(uint32_t *info_data) { void *rw_hash = flash_hash_rw(); /* copy first 20 bytes of RW hash */ memcpy(info_data, rw_hash, 5 * sizeof(uint32_t)); /* copy other info into data msg */ #if defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR) && \ defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR) info_data[5] = VDO_INFO(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR, CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR, ver_get_num_commits(system_get_image_copy()), (system_get_image_copy() != EC_IMAGE_RO)); #else info_data[5] = 0; #endif } int pd_custom_flash_vdm(int port, int cnt, uint32_t *payload) { static int flash_offset; int rsize = 1; /* default is just VDM header returned */ switch (PD_VDO_CMD(payload[0])) { case VDO_CMD_VERSION: memcpy(payload + 1, ¤t_image_data.version, 24); rsize = 7; break; case VDO_CMD_REBOOT: /* ensure the power supply is in a safe state */ pd_power_supply_reset(0); system_reset(0); break; case VDO_CMD_READ_INFO: /* copy info into response */ pd_get_info(payload + 1); rsize = 7; break; case VDO_CMD_FLASH_ERASE: /* do not kill the code under our feet */ if (system_get_image_copy() != EC_IMAGE_RO) break; pd_log_event(PD_EVENT_ACC_RW_ERASE, 0, 0, NULL); flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF; crec_flash_physical_erase(CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF, CONFIG_RW_SIZE); rw_flash_changed = 1; break; case VDO_CMD_FLASH_WRITE: /* do not kill the code under our feet */ if ((system_get_image_copy() != EC_IMAGE_RO) || (flash_offset < CONFIG_EC_WRITABLE_STORAGE_OFF + CONFIG_RW_STORAGE_OFF)) break; crec_flash_physical_write(flash_offset, 4 * (cnt - 1), (const char *)(payload + 1)); flash_offset += 4 * (cnt - 1); rw_flash_changed = 1; break; case VDO_CMD_ERASE_SIG: /* this is not touching the code area */ { uint32_t zero = 0; int offset; /* zeroes the area containing the RSA signature */ for (offset = FW_RW_END - RSANUMBYTES; offset < FW_RW_END; offset += 4) crec_flash_physical_write(offset, 4, (const char *)&zero); } break; default: /* Unknown : do not answer */ return 0; } return rsize; }