/* Copyright 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Utility functions for Chrome EC */ #include "builtin/assert.h" #include "common.h" #include "console.h" #include "util.h" int find_base(int base, int *c, const char **nptr) { if ((base == 0 || base == 16) && *c == '0' && (**nptr == 'x' || **nptr == 'X')) { *c = (*nptr)[1]; (*nptr) += 2; base = 16; } else if (base == 0) { base = *c == '0' ? 8 : 10; } return base; } /* Like strtol(), but for integers */ int strtoi(const char *nptr, char **endptr, int base) { int result = 0; int neg = 0; int c = '\0'; while ((c = *nptr++) && isspace(c)) ; if (c == '+') { c = *nptr++; } else if (c == '-') { neg = 1; c = *nptr++; } base = find_base(base, &c, &nptr); while (c) { if (c >= '0' && c < '0' + MIN(base, 10)) result = result * base + (c - '0'); else if (c >= 'A' && c < 'A' + base - 10) result = result * base + (c - 'A' + 10); else if (c >= 'a' && c < 'a' + base - 10) result = result * base + (c - 'a' + 10); else break; c = *nptr++; } if (endptr) *endptr = (char *)nptr - 1; return neg ? -result : result; } int parse_bool(const char *s, int *dest) { /* off, disable, false, no */ if (!strcasecmp(s, "off") || !strncasecmp(s, "dis", 3) || tolower((unsigned char)*s) == 'f' || tolower((unsigned char)*s) == 'n') { *dest = 0; return 1; } /* on, enable, true, yes */ if (!strcasecmp(s, "on") || !strncasecmp(s, "ena", 3) || tolower((unsigned char)*s) == 't' || tolower((unsigned char)*s) == 'y') { *dest = 1; return 1; } /* dunno */ return 0; } /* Constant-time memory comparison */ int safe_memcmp(const void *s1, const void *s2, size_t size) { const uint8_t *us1 = s1; const uint8_t *us2 = s2; int result = 0; if (size == 0) return 0; /* * Code snippet without data-dependent branch due to Nate Lawson * (nate@root.org) of Root Labs. */ while (size--) result |= *us1++ ^ *us2++; return result != 0; } void reverse(void *dest, size_t len) { int i; uint8_t *start = dest; uint8_t *end = start + len; for (i = 0; i < len / 2; ++i) { uint8_t tmp = *start; *start++ = *--end; *end = tmp; } } char *strzcpy(char *dest, const char *src, int len) { char *d = dest; if (len <= 0) return dest; while (len > 1 && *src) { *(d++) = *(src++); len--; } *d = '\0'; return dest; } int uint64divmod(uint64_t *n, int d) { uint64_t q = 0, mask; int r = 0; /* Divide-by-zero returns zero */ if (!d) { *n = 0; return 0; } /* Common powers of 2 = simple shifts */ if (d == 2) { r = *n & 1; *n >>= 1; return r; } else if (d == 16) { r = *n & 0xf; *n >>= 4; return r; } /* If v fits in 32-bit, we're done. */ if (*n <= 0xffffffff) { uint32_t v32 = *n; r = v32 % d; *n = v32 / d; return r; } /* Otherwise do integer division the slow way. */ for (mask = (1ULL << 63); mask; mask >>= 1) { r <<= 1; if (*n & mask) r |= 1; if (r >= d) { r -= d; q |= mask; } } *n = q; return r; } int get_next_bit(uint32_t *mask) { int bit = 31 - __builtin_clz(*mask); *mask &= ~BIT(bit); return bit; } bool bytes_are_trivial(const uint8_t *buffer, size_t size) { size_t i; uint8_t result0 = 0; uint8_t result1 = 0; for (i = 0; i < size; i++) { result0 |= buffer[i] ^ 0x00; result1 |= buffer[i] ^ 0xff; } return (result0 == 0) || (result1 == 0); } bool is_aligned(uint32_t addr, uint32_t align) { if (!POWER_OF_TWO(align)) return false; return (addr & (align - 1)) == 0; } int alignment_log2(unsigned int x) { ASSERT(x != 0); /* ctz(0) is undefined */ return __builtin_ctz(x); } /****************************************************************************/ /* stateful conditional stuff */ enum cond_internal_bits { COND_CURR_MASK = BIT(0), /* current value */ COND_RISE_MASK = BIT(1), /* set if 0->1 */ COND_FALL_MASK = BIT(2), /* set if 1->0 */ }; void cond_init(cond_t *c, int val) { if (val) *c = COND_CURR_MASK; else *c = 0; } int cond_is(cond_t *c, int val) { if (val) return *c & COND_CURR_MASK; else return !(*c & COND_CURR_MASK); } void cond_set(cond_t *c, int val) { if (val && cond_is(c, 0)) *c |= COND_RISE_MASK; else if (!val && cond_is(c, 1)) *c |= COND_FALL_MASK; if (val) *c |= COND_CURR_MASK; else *c &= ~COND_CURR_MASK; } int cond_went(cond_t *c, int val) { int ret; if (val) { ret = *c & COND_RISE_MASK; *c &= ~COND_RISE_MASK; } else { ret = *c & COND_FALL_MASK; *c &= ~COND_FALL_MASK; } return ret; } /****************************************************************************/ /* console command parsing */ /** * Parse offset and size from command line argv[shift] and argv[shift+1] * * Default values: If argc<=shift, leaves offset unchanged, returning error if * *offset<0. If argc shift) { i = (uint32_t)strtoi(argv[shift], &e, 0); if (*e) return EC_ERROR_PARAM1; *offset = i; } else if (*offset < 0) return EC_ERROR_PARAM_COUNT; if (argc > shift + 1) { i = (uint32_t)strtoi(argv[shift + 1], &e, 0); if (*e) return EC_ERROR_PARAM2; *size = i; } else if (*size < 0) return EC_ERROR_PARAM_COUNT; return EC_SUCCESS; } void hexdump(const uint8_t *data, int len) { int i, j; if (!data || !len) return; for (i = 0; i < len; i += 16) { /* Left column (Hex) */ for (j = i; j < i + 16; j++) { if (j < len) ccprintf(" %02x", data[j]); else ccprintf(" "); } /* Right column (ASCII) */ ccprintf(" |"); for (j = i; j < i + 16; j++) { int c = j < len ? data[j] : ' '; ccprintf("%c", isprint(c) ? c : '.'); } ccprintf("|\n"); } } void wait_for_ready(volatile uint32_t *reg, uint32_t enable, uint32_t ready) { if (*reg & ready) return; /* Enable */ *reg |= enable; /* Wait for ready */ while (!(*reg & ready)) ; } int binary_first_base3_from_bits(int *bits, int nbits) { int binary_below = 0; int has_z = 0; int base3 = 0; int i; /* Loop through every ternary digit, from MSB to LSB. */ for (i = nbits - 1; i >= 0; i--) { /* * We keep track of the normal ternary result and whether * we found any bit that was a Z. We also determine the * amount of numbers that can be represented with only binary * digits (no Z) whose value in the normal ternary system * is lower than the one we are parsing. Counting from the left, * we add 2^i for any '1' digit to account for the binary * numbers whose values would be below it if all following * digits we parsed would be '0'. As soon as we find a '2' digit * we can total the remaining binary numbers below as 2^(i+1) * because we know that all binary representations counting only * this and following digits must have values below our number * (since 1xxx is always smaller than 2xxx). * * Example: 1 0 2 1 (counting from the left / most significant) * '1' at 3^3: Add 2^3 = 8 to account for binaries 0000-0111 * '0' at 3^2: Ignore (not all binaries 1000-1100 are below us) * '2' at 3^1: Add 2^(1+1) = 4 to account for binaries 1000-1011 * Stop adding for lower digits (3^0), all already accounted * now. We know that there can be no binary numbers 1020-102X. */ base3 = (base3 * 3) + bits[i]; if (!has_z) { switch (bits[i]) { case 0: /* Ignore '0' digits. */ break; case 1: /* Account for binaries 0 to 2^i - 1. */ binary_below += 1 << i; break; case 2: /* Account for binaries 0 to 2^(i+1) - 1. */ binary_below += 1 << (i + 1); has_z = 1; } } } if (has_z) return base3 + (1 << nbits) - binary_below; /* binary_below is normal binary system value if !has_z. */ return binary_below; } int binary_from_bits(int *bits, int nbits) { int value = 0; int i; /* Loop through every binary digit, from MSB to LSB. */ for (i = nbits - 1; i >= 0; i--) value = (value << 1) | bits[i]; return value; } int ternary_from_bits(int *bits, int nbits) { int value = 0; int i; /* Loop through every ternary digit, from MSB to LSB. */ for (i = nbits - 1; i >= 0; i--) value = (value * 3) + bits[i]; return value; }