/* Copyright 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* MPU module for Chrome EC */ #include "mpu.h" #include "console.h" #include "cpu.h" #include "registers.h" #include "task.h" #include "util.h" /** * @return Number of regions supported by the MPU. 0 means the processor does * not implement an MPU. */ int mpu_num_regions(void) { return MPU_TYPE_REG_COUNT(mpu_get_type()); } /** * @return true if processor has MPU, false otherwise */ bool has_mpu(void) { return mpu_num_regions() != 0; } /** * @return true if MPU has unified instruction and data maps, false otherwise */ bool mpu_is_unified(void) { return (mpu_get_type() & MPU_TYPE_UNIFIED_MASK) == 0; } /** * Update a memory region. * * region: index of the region to update * addr: base address of the region * size_bit: size of the region in power of two. * attr: attribute bits. Current value will be overwritten if enable is true. * enable: enables the region if non zero. Otherwise, disables the region. * srd: subregion mask to partition region into 1/8ths, 0 = subregion enabled. * * Based on 3.1.4.1 'Updating an MPU Region' of Stellaris LM4F232H5QC Datasheet */ int mpu_update_region(uint8_t region, uint32_t addr, uint8_t size_bit, uint16_t attr, uint8_t enable, uint8_t srd) { /* * Note that on the Cortex-M3, Cortex-M4, and Cortex-M7, the base * address used for an MPU region must be aligned to the size of the * region: * * https://developer.arm.com/docs/dui0553/a/cortex-m4-peripherals/optional-memory-protection-unit/mpu-region-base-address-register * https://developer.arm.com/docs/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/mpu-region-base-address-register * https://developer.arm.com/docs/dui0646/a/cortex-m7-peripherals/optional-memory-protection-unit/mpu-region-base-address-register#BABDAHJG */ if (!is_aligned(addr, BIT(size_bit))) return -EC_ERROR_INVAL; if (region >= mpu_num_regions()) return -EC_ERROR_INVAL; if (size_bit < MPU_SIZE_BITS_MIN) return -EC_ERROR_INVAL; asm volatile("isb; dsb;"); MPU_NUMBER = region; MPU_SIZE &= ~1; /* Disable */ if (enable) { MPU_BASE = addr; /* * MPU_ATTR = attr; * MPU_SIZE = (srd << 8) | ((size_bit - 1) << 1) | 1; * * WORKAROUND: the 2 half-word accesses above should work * according to the doc, but they don't ..., do a single 32-bit * one. */ REG32(&MPU_SIZE) = ((uint32_t)attr << 16) | (srd << 8) | ((size_bit - 1) << 1) | 1; } asm volatile("isb; dsb;"); return EC_SUCCESS; } /* * Greedily configure the largest possible part of the given region from the * base address. * * Returns EC_SUCCESS on success and sets *consumed to the number of bytes * mapped from the base address. In case of error, the value of *consumed is * unpredictable. * * For instance, if addr is 0x10070000 and size is 0x30000 then memory in the * range 0x10070000-0x10080000 will be configured and *consumed will be set to * 0x10000. */ static int mpu_config_region_greedy(uint8_t region, uint32_t addr, uint32_t size, uint16_t attr, uint8_t enable, uint32_t *consumed) { /* * Compute candidate alignment to be used for the MPU region. * * This is the minimum of the base address and size alignment, since * regions must be naturally aligned to their size. */ uint8_t natural_alignment = MIN(addr == 0 ? 32 : alignment_log2(addr), alignment_log2(size)); uint8_t subregion_disable = 0; if (natural_alignment >= 5) { int sr_idx; uint32_t subregion_base, subregion_size; /* * For MPU regions larger than 256 bytes we can use subregions, * (which are a minimum of 32 bytes in size) making the actual * MPU region 8x larger. Depending on the address alignment this * can allow us to cover a larger area (and never a smaller * one). */ natural_alignment += 3; /* Region size cannot exceed 4GB. */ if (natural_alignment > 32) natural_alignment = 32; /* * Generate the subregion mask by walking through each, * disabling if it is not completely contained in the requested * range. */ subregion_base = addr & ~((1 << natural_alignment) - 1); subregion_size = 1 << (natural_alignment - 3); *consumed = 0; for (sr_idx = 0; sr_idx < 8; sr_idx++) { if (subregion_base < addr || (subregion_base + subregion_size) > (addr + size)) /* lsb of subregion mask is lowest address */ subregion_disable |= 1 << sr_idx; else /* not disabled means consumed */ *consumed += subregion_size; subregion_base += subregion_size; } } else { /* Not using subregions; all enabled */ *consumed = 1 << natural_alignment; } return mpu_update_region(region, addr & ~((1 << natural_alignment) - 1), natural_alignment, attr, enable, subregion_disable); } /** * Configure a region * * region: index of the region to update * addr: Base address of the region * size: Size of the region in bytes * attr: Attribute bits. Current value will be overwritten if enable is set. * enable: Enables the region if non zero. Otherwise, disables the region. * * Returns EC_SUCCESS on success, -EC_ERROR_OVERFLOW if it is not possible to * fully configure the given region, or -EC_ERROR_INVAL if a parameter is * invalid (such as the address or size having unsupported alignment). */ int mpu_config_region(uint8_t region, uint32_t addr, uint32_t size, uint16_t attr, uint8_t enable) { int rv; uint32_t consumed; /* Zero size doesn't require configuration */ if (size == 0) return EC_SUCCESS; rv = mpu_config_region_greedy(region, addr, size, attr, enable, &consumed); if (rv != EC_SUCCESS) return rv; ASSERT(consumed <= size); addr += consumed; size -= consumed; /* Regions other than DATA_RAM_TEXT may use two MPU regions */ if (size > 0 && region != REGION_DATA_RAM_TEXT) { rv = mpu_config_region_greedy(region + 1, addr, size, attr, enable, &consumed); if (rv != EC_SUCCESS) return rv; ASSERT(consumed <= size); addr += consumed; size -= consumed; } if (size > 0) return EC_ERROR_OVERFLOW; return EC_SUCCESS; } /** * Set a region executable and read-write. * * region: index of the region * addr: base address of the region * size: size of the region in bytes * texscb: TEX and SCB bit field */ static int mpu_unlock_region(uint8_t region, uint32_t addr, uint32_t size, uint8_t texscb) { return mpu_config_region(region, addr, size, MPU_ATTR_RW_RW | texscb, 1); } void mpu_enable(void) { MPU_CTRL |= MPU_CTRL_PRIVDEFEN | MPU_CTRL_HFNMIENA | MPU_CTRL_ENABLE; } void mpu_disable(void) { MPU_CTRL &= ~(MPU_CTRL_PRIVDEFEN | MPU_CTRL_HFNMIENA | MPU_CTRL_ENABLE); } uint32_t mpu_get_type(void) { return MPU_TYPE; } int mpu_protect_data_ram(void) { int ret; /* Prevent code execution from data RAM */ ret = mpu_config_region(REGION_DATA_RAM, CONFIG_RAM_BASE, CONFIG_DATA_RAM_SIZE, MPU_ATTR_XN | MPU_ATTR_RW_RW | MPU_ATTR_INTERNAL_SRAM, 1); if (ret != EC_SUCCESS) return ret; /* Exempt the __iram_text section */ return mpu_unlock_region( REGION_DATA_RAM_TEXT, (uint32_t)&__iram_text_start, (uint32_t)(&__iram_text_end - &__iram_text_start), MPU_ATTR_INTERNAL_SRAM); } #if defined(CONFIG_EXTERNAL_STORAGE) || !defined(CONFIG_FLASH_PHYSICAL) int mpu_protect_code_ram(void) { /* Prevent write access to code RAM */ return mpu_config_region(REGION_STORAGE, CONFIG_PROGRAM_MEMORY_BASE + CONFIG_RO_MEM_OFF, CONFIG_CODE_RAM_SIZE, MPU_ATTR_RO_NO | MPU_ATTR_INTERNAL_SRAM, 1); } #else int mpu_lock_ro_flash(void) { /* Prevent execution from internal mapped RO flash */ return mpu_config_region(REGION_STORAGE, CONFIG_MAPPED_STORAGE_BASE + CONFIG_RO_MEM_OFF, CONFIG_RO_SIZE, MPU_ATTR_XN | MPU_ATTR_RW_RW | MPU_ATTR_FLASH_MEMORY, 1); } /* Represent RW with at most 2 MPU regions. */ struct mpu_rw_regions mpu_get_rw_regions(void) { int aligned_size_bit; struct mpu_rw_regions regions = {}; regions.addr[0] = CONFIG_MAPPED_STORAGE_BASE + CONFIG_RW_MEM_OFF; /* * Least significant set bit of the address determines the max size of * the region because on the Cortex-M3, Cortex-M4 and Cortex-M7, the * address used for an MPU region must be aligned to the size. */ aligned_size_bit = __fls(regions.addr[0] & -regions.addr[0]); regions.size[0] = MIN(BIT(aligned_size_bit), CONFIG_RW_SIZE); regions.addr[1] = regions.addr[0] + regions.size[0]; regions.size[1] = CONFIG_RW_SIZE - regions.size[0]; regions.num_regions = (regions.size[1] == 0) ? 1 : 2; return regions; } int mpu_lock_rw_flash(void) { /* Prevent execution from internal mapped RW flash */ const uint16_t mpu_attr = MPU_ATTR_XN | MPU_ATTR_RW_RW | MPU_ATTR_FLASH_MEMORY; const struct mpu_rw_regions regions = mpu_get_rw_regions(); int rv; rv = mpu_config_region(REGION_STORAGE, regions.addr[0], regions.size[0], mpu_attr, 1); if ((rv != EC_SUCCESS) || (regions.num_regions == 1)) return rv; /* If this fails then it's impossible to represent with two regions. */ return mpu_config_region(REGION_STORAGE2, regions.addr[1], regions.size[1], mpu_attr, 1); } #endif /* !CONFIG_EXTERNAL_STORAGE */ #ifdef CONFIG_ROLLBACK_MPU_PROTECT int mpu_lock_rollback(int lock) { int rv; int num_mpu_regions = mpu_num_regions(); const uint32_t rollback_region_start_address = CONFIG_MAPPED_STORAGE_BASE + CONFIG_ROLLBACK_OFF; const uint32_t rollback_region_total_size = CONFIG_ROLLBACK_SIZE; const uint16_t mpu_attr = MPU_ATTR_XN /* Execute never */ | MPU_ATTR_NO_NO /* No access (privileged or unprivileged */; /* * Originally rollback MPU support was added on Cortex-M7, which * supports 16 MPU regions and has rollback region aligned in a way * that we can use a single region. */ uint8_t rollback_mpu_region = REGION_ROLLBACK; if (rollback_mpu_region < num_mpu_regions) { rv = mpu_config_region(rollback_mpu_region, rollback_region_start_address, rollback_region_total_size, mpu_attr, lock); return rv; } /* * If we get here, we can't use REGION_ROLLBACK because our MPU doesn't * have enough regions. Instead, we choose unused MPU regions. * * Note that on the Cortex-M3, Cortex-M4, and Cortex-M7, the base * address used for an MPU region must be aligned to the size of the * region, so it's not possible to use a single region to protect the * entire rollback flash on the STM32F412 (bloonchipper); we have to * use two. * * See mpu_update_region for alignment details. */ rollback_mpu_region = REGION_CHIP_RESERVED; rv = mpu_config_region(rollback_mpu_region, rollback_region_start_address, rollback_region_total_size / 2, mpu_attr, lock); if (rv != EC_SUCCESS) return rv; rollback_mpu_region = REGION_CODE_RAM; rv = mpu_config_region(rollback_mpu_region, rollback_region_start_address + (rollback_region_total_size / 2), rollback_region_total_size / 2, mpu_attr, lock); return rv; } #endif #ifdef CONFIG_CHIP_UNCACHED_REGION /* Store temporarily the regions ranges to use them for the MPU configuration */ #define REGION(_name, _flag, _start, _size) \ static const uint32_t CONCAT2(_region_start_, _name) \ __attribute__((unused, section(".unused"))) = _start; \ static const uint32_t CONCAT2(_region_size_, _name) \ __attribute__((unused, section(".unused"))) = _size; #include "memory_regions.inc" #undef REGION #endif /* CONFIG_CHIP_UNCACHED_REGION */ int mpu_pre_init(void) { int i; int num_mpu_regions; int rv; if (!has_mpu()) return EC_ERROR_HW_INTERNAL; num_mpu_regions = mpu_num_regions(); /* Supports MPU with 8 or 16 unified regions */ if (!mpu_is_unified() || (num_mpu_regions != 8 && num_mpu_regions != 16)) return EC_ERROR_UNIMPLEMENTED; mpu_disable(); for (i = 0; i < num_mpu_regions; ++i) { /* * Disable all regions. * * We use the smallest possible size (32 bytes), but it * doesn't really matter since the regions are disabled. * * Use the fixed SRAM region base to ensure base is aligned * to the region size. */ rv = mpu_update_region(i, CORTEX_M_SRAM_BASE, MPU_SIZE_BITS_MIN, 0, 0, 0); if (rv != EC_SUCCESS) return rv; } if (IS_ENABLED(CONFIG_ROLLBACK_MPU_PROTECT)) { rv = mpu_lock_rollback(1); if (rv != EC_SUCCESS) return rv; } if (IS_ENABLED(CONFIG_ARMV7M_CACHE)) { #ifdef CONFIG_CHIP_UNCACHED_REGION rv = mpu_config_region( REGION_UNCACHED_RAM, CONCAT2(_region_start_, CONFIG_CHIP_UNCACHED_REGION), CONCAT2(_region_size_, CONFIG_CHIP_UNCACHED_REGION), MPU_ATTR_XN | MPU_ATTR_RW_RW, 1); if (rv != EC_SUCCESS) return rv; #endif } mpu_enable(); if (IS_ENABLED(CONFIG_ARMV7M_CACHE)) cpu_enable_caches(); return EC_SUCCESS; }