/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Task scheduling / events module for Chrome EC operating system */ #include "atomic.h" #include "common.h" #include "console.h" #include "cpu.h" #include "hwtimer_chip.h" #include "intc.h" #include "irq_chip.h" #include "link_defs.h" #include "registers.h" #include "task.h" #include "timer.h" #include "util.h" typedef union { struct { /* * Note that sp must be the first element in the task struct * for __switchto() to work. */ uint32_t sp; /* Saved stack pointer for context switch */ uint32_t events; /* Bitmaps of received events */ uint64_t runtime; /* Time spent in task */ uint32_t *stack; /* Start of stack */ }; } task_; /* Value to store in unused stack */ #define STACK_UNUSED_VALUE 0xdeadd00d /* declare task routine prototypes */ #define TASK(n, r, d, s) void r(void *); void __idle(void); CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST #undef TASK /* Task names for easier debugging */ #define TASK(n, r, d, s) #n, static const char * const task_names[] = { "<< idle >>", CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST }; #undef TASK #ifdef CONFIG_TASK_PROFILING static int task_will_switch; static uint64_t exc_sub_time; static uint64_t task_start_time; /* Time task scheduling started */ static uint64_t exc_start_time; /* Time of task->exception transition */ static uint64_t exc_end_time; /* Time of exception->task transition */ static uint64_t exc_total_time; /* Total time in exceptions */ static uint32_t svc_calls; /* Number of service calls */ static uint32_t task_switches; /* Number of times active task changed */ static uint32_t irq_dist[CONFIG_IRQ_COUNT]; /* Distribution of IRQ calls */ #endif extern int __task_start(void); #ifndef CONFIG_LOW_POWER_IDLE /* Idle task. Executed when no tasks are ready to be scheduled. */ void __idle(void) { /* * Print when the idle task starts. This is the lowest priority task, * so this only starts once all other tasks have gotten a chance to do * their task inits and have gone to sleep. */ cprints(CC_TASK, "idle task started"); while (1) { #ifdef CHIP_FAMILY_IT83XX /* doze mode */ IT83XX_ECPM_PLLCTRL = EC_PLL_DOZE; #endif asm volatile ("dsb"); /* * Wait for the next irq event. This stops the CPU clock * (sleep / deep sleep, depending on chip config). */ asm("standby wake_grant"); } } #endif /* !CONFIG_LOW_POWER_IDLE */ static void task_exit_trap(void) { int i = task_get_current(); cprints(CC_TASK, "Task %d (%s) exited!", i, task_names[i]); /* Exited tasks simply sleep forever */ while (1) task_wait_event(-1); } /* Startup parameters for all tasks. */ #define TASK(n, r, d, s) { \ .r0 = (uint32_t)d, \ .pc = (uint32_t)r, \ .stack_size = s, \ }, static const struct { uint32_t r0; uint32_t pc; uint16_t stack_size; } tasks_init[] = { TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE) CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST }; #undef TASK /* Contexts for all tasks */ static task_ tasks[TASK_ID_COUNT]; /* Sanity checks about static task invariants */ BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned) * 8); BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8))); /* Stacks for all tasks */ #define TASK(n, r, d, s) + s uint8_t task_stacks[0 TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE) CONFIG_TASK_LIST CONFIG_TEST_TASK_LIST ] __aligned(8); #undef TASK /* Reserve space to discard context on first context switch. */ uint32_t scratchpad[19]; task_ *current_task = (task_ *)scratchpad; /* * Should IRQs chain to svc_handler()? This should be set if either of the * following is true: * * 1) Task scheduling has started, and task profiling is enabled. Task * profiling does its tracking in svc_handler(). * * 2) An event was set by an interrupt; this could result in a higher-priority * task unblocking. After checking for a task switch, svc_handler() will clear * the flag (unless profiling is also enabled; then the flag remains set). */ int need_resched; /* * Bitmap of all tasks ready to be run. * * Start off with only the hooks task marked as ready such that all the modules * can do their init within a task switching context. The hooks task will then * make a call to enable all tasks. */ static uint32_t tasks_ready = (1 << TASK_ID_HOOKS); /* * Initially allow only the HOOKS and IDLE task to run, regardless of ready * status, in order for HOOK_INIT to complete before other tasks. * task_enable_all_tasks() will open the flood gates. */ static uint32_t tasks_enabled = (1 << TASK_ID_HOOKS) | (1 << TASK_ID_IDLE); int start_called; /* Has task swapping started */ /* interrupt number of sw interrupt */ static int sw_int_num; /* Number of CPU hardware interrupts (HW0 ~ HW15) */ int cpu_int_entry_number; /* * This variable is used to save link pointer register, * and it is updated at the beginning of each ISR. */ uint32_t ilp; /* This variable is used to save link pointer register at EC reset. */ uint32_t ec_reset_lp; static inline task_ *__task_id_to_ptr(task_id_t id) { return tasks + id; } /* * We use INT_MASK to enable (interrupt_enable)/ * disable (interrupt_disable) all maskable interrupts. * And, EC modules share HW2 ~ HW15 interrupts. If corresponding * bit of INT_MASK is set, it will never be cleared * (see chip_disable_irq()). To enable/disable individual * interrupt of EC module, we can use corresponding EXT_IERx registers. * * ------------ ----------- * | | | ------- | * |EC modules| | | HW2 | | * | | | ------- | * | INT 0 | | ------- | ------- ------- * | ~ | --> | | HW3 | | -> | GIE | -> | CPU | * | INT 167 | | ------- | ------- ------- * | | | ... | | * | | | ... | - clear by HW while * | | | ------- | interrupt occur and * | | | | HW15| | restore from IPSW after * | | | ------- | instruction "iret". * | EXT_IERx | | INT_MASK| * ------------ ----------- */ void __ram_code interrupt_disable(void) { /* Mask all interrupts, only keep division by zero exception */ uint32_t val = (1 << 30); asm volatile ("mtsr %0, $INT_MASK" : : "r"(val)); asm volatile ("dsb"); } void __ram_code interrupt_enable(void) { /* Enable HW2 ~ HW15 and division by zero exception interrupts */ uint32_t val = ((1 << 30) | 0xFFFC); asm volatile ("mtsr %0, $INT_MASK" : : "r"(val)); } inline int in_interrupt_context(void) { /* check INTL (Interrupt Stack Level) bits */ return get_psw() & PSW_INTL_MASK; } task_id_t task_get_current(void) { #ifdef CONFIG_DEBUG_BRINGUP /* If we haven't done a context switch then our task ID isn't valid */ ASSERT(current_task != (task_ *)scratchpad); #endif return current_task - tasks; } uint32_t *task_get_event_bitmap(task_id_t tskid) { task_ *tsk = __task_id_to_ptr(tskid); return &tsk->events; } int task_start_called(void) { return start_called; } int get_sw_int(void) { /* If this is a SW interrupt */ if (get_itype() & 8) return sw_int_num; return 0; } /** * Scheduling system call * * Also includes emulation of software triggering interrupt vector */ void __ram_code __keep syscall_handler(int desched, task_id_t resched, int swirq) { /* are we emulating an interrupt ? */ if (swirq) { void (*handler)(void) = __irqhandler[swirq + 1]; /* adjust IPC to return *after* the syscall instruction */ set_ipc(get_ipc() + 4); /* call the regular IRQ handler */ handler(); sw_int_num = 0; return; } if (desched && !current_task->events) { /* * Remove our own ready bit (current - tasks is same as * task_get_current()) */ tasks_ready &= ~(1 << (current_task - tasks)); } tasks_ready |= 1 << resched; /* trigger a re-scheduling on exit */ need_resched = 1; #ifdef CONFIG_TASK_PROFILING svc_calls++; #endif /* adjust IPC to return *after* the syscall instruction */ set_ipc(get_ipc() + 4); } task_ *next_sched_task(void) { task_ *new_task = __task_id_to_ptr(__fls(tasks_ready & tasks_enabled)); #ifdef CONFIG_TASK_PROFILING if (current_task != new_task) { if ((current_task - tasks) < TASK_ID_COUNT) { current_task->runtime += (exc_start_time - exc_end_time - exc_sub_time); } task_will_switch = 1; } #endif #ifdef CONFIG_DEBUG_STACK_OVERFLOW if (*current_task->stack != STACK_UNUSED_VALUE) { int i = task_get_current(); if (i < TASK_ID_COUNT) { panic_printf("\n\nStack overflow in %s task!\n", task_names[i]); #ifdef CONFIG_SOFTWARE_PANIC software_panic(PANIC_SW_STACK_OVERFLOW, i); #endif } } #endif return new_task; } static inline void __schedule(int desched, int resched, int swirq) { register int p0 asm("$r0") = desched; register int p1 asm("$r1") = resched; register int p2 asm("$r2") = swirq; asm("syscall 0" : : "r"(p0), "r"(p1), "r"(p2)); } void update_exc_start_time(void) { #ifdef CONFIG_TASK_PROFILING exc_start_time = get_time().val; #endif } /* Interrupt number of EC modules */ static volatile int ec_int; #ifdef CHIP_FAMILY_IT83XX int __ram_code intc_get_ec_int(void) { return ec_int; } #endif void __ram_code start_irq_handler(void) { /* save r0, r1, and r2 for syscall */ asm volatile ("smw.adm $r0, [$sp], $r2, 0"); /* If this is a SW interrupt */ if (get_itype() & 8) { ec_int = get_sw_int(); } else { #ifdef CHIP_FAMILY_IT83XX int i; for (i = 0; i < IT83XX_IRQ_COUNT; i++) { ec_int = IT83XX_INTC_IVCT(cpu_int_entry_number); /* * WORKAROUND: when the interrupt vector register isn't * latched in a load operation, * we read it again to make sure the value we got * is the correct value. */ if (ec_int == IT83XX_INTC_IVCT(cpu_int_entry_number)) break; } /* Determine interrupt number */ ec_int -= 16; #endif } #if defined(CONFIG_LOW_POWER_IDLE) && defined(CHIP_FAMILY_IT83XX) clock_sleep_mode_wakeup_isr(); #endif #ifdef CONFIG_TASK_PROFILING update_exc_start_time(); /* * Track IRQ distribution. No need for atomic add, because an IRQ * can't pre-empt itself. */ if ((ec_int > 0) && (ec_int < ARRAY_SIZE(irq_dist))) irq_dist[ec_int]++; #endif /* restore r0, r1, and r2 */ asm volatile ("lmw.bim $r0, [$sp], $r2, 0"); } void end_irq_handler(void) { #ifdef CONFIG_TASK_PROFILING uint64_t t, p; /* * save r0 and fp (fp for restore r0-r5, r15, fp, lp and sp * while interrupt exit. */ asm volatile ("smw.adm $r0, [$sp], $r0, 8"); t = get_time().val; p = t - exc_start_time; exc_total_time += p; exc_sub_time += p; if (task_will_switch) { task_will_switch = 0; exc_sub_time = 0; exc_end_time = t; task_switches++; } /* restore r0 and fp */ asm volatile ("lmw.bim $r0, [$sp], $r0, 8"); #endif } static uint32_t __ram_code __wait_evt(int timeout_us, task_id_t resched) { task_ *tsk = current_task; task_id_t me = tsk - tasks; uint32_t evt; int ret; ASSERT(!in_interrupt_context()); if (timeout_us > 0) { timestamp_t deadline = get_time(); deadline.val += timeout_us; ret = timer_arm(deadline, me); ASSERT(ret == EC_SUCCESS); } while (!(evt = atomic_read_clear(&tsk->events))) { /* Remove ourself and get the next task in the scheduler */ __schedule(1, resched, 0); resched = TASK_ID_IDLE; } if (timeout_us > 0) { timer_cancel(me); /* Ensure timer event is clear, we no longer care about it */ atomic_clear(&tsk->events, TASK_EVENT_TIMER); } return evt; } uint32_t __ram_code task_set_event(task_id_t tskid, uint32_t event, int wait) { task_ *receiver = __task_id_to_ptr(tskid); ASSERT(receiver); /* Set the event bit in the receiver message bitmap */ atomic_or(&receiver->events, event); /* Re-schedule if priorities have changed */ if (in_interrupt_context()) { /* The receiver might run again */ atomic_or(&tasks_ready, 1 << tskid); if (start_called) need_resched = 1; } else { if (wait) return __wait_evt(-1, tskid); else __schedule(0, tskid, 0); } return 0; } uint32_t __ram_code task_wait_event(int timeout_us) { return __wait_evt(timeout_us, TASK_ID_IDLE); } uint32_t __ram_code task_wait_event_mask(uint32_t event_mask, int timeout_us) { uint64_t deadline = get_time().val + timeout_us; uint32_t events = 0; int time_remaining_us = timeout_us; /* Add the timer event to the mask so we can indicate a timeout */ event_mask |= TASK_EVENT_TIMER; while (!(events & event_mask)) { /* Collect events to re-post later */ events |= __wait_evt(time_remaining_us, TASK_ID_IDLE); time_remaining_us = deadline - get_time().val; if (timeout_us > 0 && time_remaining_us <= 0) { /* Ensure we return a TIMER event if we timeout */ events |= TASK_EVENT_TIMER; break; } } /* Re-post any other events collected */ if (events & ~event_mask) atomic_or(¤t_task->events, events & ~event_mask); return events & event_mask; } uint32_t __ram_code get_int_mask(void) { uint32_t ret; asm volatile ("mfsr %0, $INT_MASK" : "=r"(ret)); return ret; } void __ram_code set_int_mask(uint32_t val) { asm volatile ("mtsr %0, $INT_MASK" : : "r"(val)); } static void set_int_priority(uint32_t val) { asm volatile ("mtsr %0, $INT_PRI" : : "r"(val)); } uint32_t get_int_ctrl(void) { uint32_t ret; asm volatile ("mfsr %0, $INT_CTRL" : "=r"(ret)); return ret; } void set_int_ctrl(uint32_t val) { asm volatile ("mtsr %0, $INT_CTRL" : : "r"(val)); } void task_enable_all_tasks(void) { /* Mark all tasks as ready and able to run. */ tasks_ready = tasks_enabled = (1 << TASK_ID_COUNT) - 1; /* Reschedule the highest priority task. */ __schedule(0, 0, 0); } void __ram_code task_enable_irq(int irq) { uint32_t int_mask = get_int_mask(); interrupt_disable(); chip_enable_irq(irq); set_int_mask(int_mask); } void __ram_code task_disable_irq(int irq) { uint32_t int_mask = get_int_mask(); interrupt_disable(); chip_disable_irq(irq); set_int_mask(int_mask); } void __ram_code task_clear_pending_irq(int irq) { chip_clear_pending_irq(irq); } void __ram_code task_trigger_irq(int irq) { int cpu_int = chip_trigger_irq(irq); if (cpu_int > 0) { sw_int_num = irq; __schedule(0, 0, cpu_int); } } /* * Initialize IRQs in the IVIC and set their priorities as defined by the * DECLARE_IRQ statements. */ static void ivic_init_irqs(void) { /* Get the IRQ priorities section from the linker */ int exc_calls = __irqprio_end - __irqprio; int i; uint32_t all_priorities = 0; /* chip-specific interrupt controller initialization */ chip_init_irqs(); /* * bit0 @ INT_CTRL = 0, * Interrupts still keep programmable priority level. */ set_int_ctrl((get_int_ctrl() & ~(1 << 0))); /* * Re-enable global interrupts in case they're disabled. On a reboot, * they're already enabled; if we've jumped here from another image, * they're not. */ interrupt_enable(); /* Set priorities */ for (i = 0; i < exc_calls; i++) { uint8_t irq = __irqprio[i].irq; uint8_t prio = __irqprio[i].priority; all_priorities |= (prio & 0x3) << (irq * 2); } set_int_priority(all_priorities); } void __ram_code mutex_lock(struct mutex *mtx) { uint32_t id = 1 << task_get_current(); ASSERT(id != TASK_ID_INVALID); /* critical section with interrupts off */ interrupt_disable(); mtx->waiters |= id; while (1) { if (!mtx->lock) { /* we got it ! */ mtx->lock = 2; mtx->waiters &= ~id; /* end of critical section : re-enable interrupts */ interrupt_enable(); return; } else { /* Contention on the mutex */ /* end of critical section : re-enable interrupts */ interrupt_enable(); /* Sleep waiting for our turn */ task_wait_event_mask(TASK_EVENT_MUTEX, 0); /* re-enter critical section */ interrupt_disable(); } } } void __ram_code mutex_unlock(struct mutex *mtx) { uint32_t waiters; task_ *tsk = current_task; waiters = mtx->waiters; /* give back the lock */ mtx->lock = 0; while (waiters) { task_id_t id = __fls(waiters); waiters &= ~(1 << id); /* Somebody is waiting on the mutex */ task_set_event(id, TASK_EVENT_MUTEX, 0); } /* Ensure no event is remaining from mutex wake-up */ atomic_clear(&tsk->events, TASK_EVENT_MUTEX); } void task_print_list(void) { int i; ccputs("Task Ready Name Events Time (s) StkUsed\n"); for (i = 0; i < TASK_ID_COUNT; i++) { char is_ready = (tasks_ready & (1<stack = (uint32_t *)scratchpad; *(uint32_t *)scratchpad = STACK_UNUSED_VALUE; /* Initialize IRQs */ ivic_init_irqs(); } int task_start(void) { #ifdef CONFIG_TASK_PROFILING task_start_time = exc_end_time = get_time().val; #endif return __task_start(); }