/* Copyright 2019 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * AMS TCS3400 light sensor driver */ #include "accelgyro.h" #include "common.h" #include "console.h" #include "als_tcs3400.h" #include "hooks.h" #include "hwtimer.h" #include "i2c.h" #include "math_util.h" #include "motion_sense_fifo.h" #include "task.h" #include "util.h" #define CPRINTS(fmt, args...) cprints(CC_ACCEL, "%s "fmt, __func__, ## args) #if defined(CONFIG_ZEPHYR) && defined(CONFIG_ACCEL_INTERRUPTS) /* * Get the mostion sensor ID of the TCS3400 sensor that * generates the interrupt. * The interrupt is converted to the event and transferred to motion * sense task that actually handles the interrupt. * * Here, we use alias to get the motion sensor ID * * e.g) als_clear below is the label of a child node in /motionsense-sensors * aliases { * tcs3400-int = &als_clear; * }; */ #if DT_NODE_EXISTS(DT_ALIAS(tcs3400_int)) #define CONFIG_ALS_TCS3400_INT_EVENT \ TASK_EVENT_MOTION_SENSOR_INTERRUPT(SENSOR_ID(DT_ALIAS(tcs3400_int))) #endif #endif STATIC_IF(CONFIG_ACCEL_FIFO) volatile uint32_t last_interrupt_timestamp; #ifdef CONFIG_TCS_USE_LUX_TABLE /* * Stores the number of atime increments/decrements needed to change light value * by 1% of saturation for each gain setting for each predefined LUX range. * * Values in array are TCS_ATIME_GAIN_FACTOR (100x) times actual value to allow * for fractions using integers. */ static const uint16_t range_atime[TCS_MAX_AGAIN - TCS_MIN_AGAIN + 1][TCS_MAX_ATIME_RANGES] = { {11200, 5600, 5600, 7200, 5500, 4500, 3800, 3800, 3300, 2900, 2575, 2275, 2075}, {11200, 5100, 2700, 1840, 1400, 1133, 981, 963, 833, 728, 650, 577, 525}, {250, 1225, 643, 441, 337, 276, 253, 235, 203, 176, 150, 0, 0}, {790, 261, 163, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }; static void decrement_atime(struct tcs_saturation_t *sat_p, uint16_t cur_lux, int percent) { int atime; uint16_t steps; int lux = MIN(cur_lux, TCS_GAIN_TABLE_MAX_LUX); steps = percent * range_atime[sat_p->again][lux / 1000] / TCS_ATIME_GAIN_FACTOR; atime = MAX(sat_p->atime - steps, TCS_MIN_ATIME); sat_p->atime = MIN(atime, TCS_MAX_ATIME); } #else static void decrement_atime(struct tcs_saturation_t *sat_p, uint16_t __attribute__((unused)) cur_lux, int __attribute__((unused)) percent) { sat_p->atime = MAX(sat_p->atime - TCS_ATIME_DEC_STEP, TCS_MIN_ATIME); } #endif /* CONFIG_TCS_USE_LUX_TABLE */ static void increment_atime(struct tcs_saturation_t *sat_p) { sat_p->atime = MIN(sat_p->atime + TCS_ATIME_INC_STEP, TCS_MAX_ATIME); } static inline int tcs3400_i2c_read8(const struct motion_sensor_t *s, int reg, int *data) { return i2c_read8(s->port, s->i2c_spi_addr_flags, reg, data); } static inline int tcs3400_i2c_write8(const struct motion_sensor_t *s, int reg, int data) { return i2c_write8(s->port, s->i2c_spi_addr_flags, reg, data); } static void tcs3400_read_deferred(void) { task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ALS_TCS3400_INT_EVENT); } DECLARE_DEFERRED(tcs3400_read_deferred); /* convert ATIME register to integration time, in microseconds */ int tcs3400_get_integration_time(int atime) { return TCS_MAX_INTEGRATION_TIME * (TCS_ATIME_GRANULARITY - atime); } static int tcs3400_read(const struct motion_sensor_t *s, intv3_t v) { int atime, again; int ret; /* Chip may have been off, make sure to setup important registers */ if (TCS3400_RGB_DRV_DATA(s+1)->calibration_mode) { atime = TCS_CALIBRATION_ATIME; again = TCS_CALIBRATION_AGAIN; } else { atime = TCS3400_RGB_DRV_DATA(s+1)->saturation.atime; again = TCS3400_RGB_DRV_DATA(s+1)->saturation.again; } ret = tcs3400_i2c_write8(s, TCS_I2C_ATIME, atime); if (ret) return ret; ret = tcs3400_i2c_write8(s, TCS_I2C_CONTROL, again); if (ret) return ret; /* Enable power, ADC, and interrupt to start cycle */ ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_COLLECTING); if (ret) return ret; if (IS_ENABLED(CONFIG_ALS_TCS3400_EMULATED_IRQ_EVENT)) { int atime; ret = tcs3400_i2c_read8(s, TCS_I2C_ATIME, &atime); if (ret) return ret; hook_call_deferred(&tcs3400_read_deferred_data, tcs3400_get_integration_time(atime)); } /* * If write succeeded, we've started the read process, but can't * complete it yet until data is ready, so pass back EC_RES_IN_PROGRESS * to inform upper level that read data process is under way and data * will be delivered when available. */ return EC_RES_IN_PROGRESS; } static int tcs3400_rgb_read(const struct motion_sensor_t *s, intv3_t v) { ccprintf("WARNING: tcs3400_rgb_read() should never be called\n"); return EC_SUCCESS; } /* * tcs3400_adjust_sensor_for_saturation() tries to keep CRGB values as * close to saturation as possible without saturating by implementing * the following logic: * * If any of the R, G, B, or C channels have saturated, then decrease AGAIN. * If AGAIN is already at its minimum, increase ATIME if not at its max already. * * Else if none of the R, G, B, or C channels have saturated, and * all samples read are less than 90% of saturation, then increase * AGAIN if it is not already at its maximum, or if it is, decrease * ATIME if it is not at it's minimum already. */ static int tcs3400_adjust_sensor_for_saturation(struct motion_sensor_t *s, uint16_t cur_lux, uint16_t *crgb_data, uint32_t status) { struct tcs_saturation_t *sat_p = &TCS3400_RGB_DRV_DATA(s+1)->saturation; const uint8_t save_again = sat_p->again; const uint8_t save_atime = sat_p->atime; uint16_t max_val = 0; int ret; int percent_left = 0; /* Adjust for saturation if needed */ if (!(status & TCS_I2C_STATUS_RGBC_VALID)) return EC_SUCCESS; for (int i = 0; i < CRGB_COUNT; i++) max_val = MAX(max_val, crgb_data[i]); /* Don't process if status isn't valid yet */ if ((status & TCS_I2C_STATUS_ALS_SATURATED) || (max_val >= TCS_SATURATION_LEVEL)) { /* Saturation occurred, decrease AGAIN if we can */ if (sat_p->again > TCS_MIN_AGAIN) sat_p->again--; else if (sat_p->atime < TCS_MAX_ATIME) /* reduce accumulation time by incrementing ATIME reg */ increment_atime(sat_p); } else if (max_val < TSC_SATURATION_LOW_BAND_LEVEL) { /* value < 90% saturation, try to increase sensitivity */ if (max_val <= TCS_GAIN_SAT_LEVEL) { if (sat_p->again < TCS_MAX_AGAIN) { sat_p->again++; } else if (sat_p->atime > TCS_MIN_ATIME) { /* * increase accumulation time by decrementing * ATIME register */ percent_left = TSC_SATURATION_LOW_BAND_PERCENT - (max_val * 100 / TCS_SATURATION_LEVEL); decrement_atime(sat_p, cur_lux, percent_left); } } else if (sat_p->atime > TCS_MIN_ATIME) { /* calculate percentage between current and desired */ percent_left = TSC_SATURATION_LOW_BAND_PERCENT - (max_val * 100 / TCS_SATURATION_LEVEL); /* increase accumulation time by decrementing ATIME */ decrement_atime(sat_p, cur_lux, percent_left); } else if (sat_p->again < TCS_MAX_AGAIN) { /* * Although we're not at maximum gain yet, we * can't just increase gain because a 4x change * in gain under these light conditions would * saturate on the next sample. What we can do * is to adjust atime to reduce sensitivity so * that we may increase gain without saturation. * This combination effectively acts as a half * gain increase (2.5x estimate) instead of a full * gain increase of > 4x that would result in * saturation. */ if (max_val < TCS_GAIN_UPSHIFT_LEVEL) { sat_p->atime = TCS_GAIN_UPSHIFT_ATIME; sat_p->again++; } } } /* If atime or gain setting changed, update atime and gain registers */ if (save_again != sat_p->again) { ret = tcs3400_i2c_write8(s, TCS_I2C_CONTROL, (sat_p->again & TCS_I2C_CONTROL_MASK)); if (ret) return ret; } if (save_atime != sat_p->atime) { ret = tcs3400_i2c_write8(s, TCS_I2C_ATIME, sat_p->atime); if (ret) return ret; } return EC_SUCCESS; } /** * normalize_channel_data - normalize the light data to remove effect of * different atime and again settings from the sample. */ static uint32_t normalize_channel_data(struct motion_sensor_t *s, uint32_t sample) { struct tcs_saturation_t *sat_p = &(TCS3400_RGB_DRV_DATA(s+1)->saturation); const uint16_t cur_gain = (1 << (2 * sat_p->again)); const uint16_t cal_again = (1 << (2 * TCS_CALIBRATION_AGAIN)); return DIV_ROUND_NEAREST(sample * (TCS_ATIME_GRANULARITY - TCS_CALIBRATION_ATIME) * cal_again, (TCS_ATIME_GRANULARITY - sat_p->atime) * cur_gain); } __overridable void tcs3400_translate_to_xyz(struct motion_sensor_t *s, int32_t *crgb_data, int32_t *xyz_data) { struct tcs3400_rgb_drv_data_t *rgb_drv_data = TCS3400_RGB_DRV_DATA(s+1); int32_t crgb_prime[CRGB_COUNT]; int32_t ir; int i; /* normalize the data for atime and again changes */ for (i = 0; i < CRGB_COUNT; i++) crgb_data[i] = normalize_channel_data(s, crgb_data[i]); /* IR removal */ ir = FP_TO_INT(fp_mul(INT_TO_FP(crgb_data[1] + crgb_data[2] + crgb_data[3] - crgb_data[0]), rgb_drv_data->calibration.irt) / 2); for (i = 0; i < ARRAY_SIZE(crgb_prime); i++) { if (crgb_data[i] < ir) crgb_prime[i] = 0; else crgb_prime[i] = crgb_data[i] - ir; } /* if CC == 0, set BC = 0 */ if (crgb_prime[CLEAR_CRGB_IDX] == 0) crgb_prime[BLUE_CRGB_IDX] = 0; /* regression fit to XYZ space */ for (i = 0; i < 3; i++) { const struct rgb_channel_calibration_t *p = &rgb_drv_data->calibration.rgb_cal[i]; xyz_data[i] = p->offset + FP_TO_INT( (fp_inter_t)p->coeff[RED_CRGB_IDX] * crgb_prime[RED_CRGB_IDX] + (fp_inter_t)p->coeff[GREEN_CRGB_IDX] * crgb_prime[GREEN_CRGB_IDX] + (fp_inter_t)p->coeff[BLUE_CRGB_IDX] * crgb_prime[BLUE_CRGB_IDX] + (fp_inter_t)p->coeff[CLEAR_CRGB_IDX] * crgb_prime[CLEAR_CRGB_IDX]); if (xyz_data[i] < 0) xyz_data[i] = 0; } } static void tcs3400_process_raw_data(struct motion_sensor_t *s, uint8_t *raw_data_buf, uint16_t *raw_light_data, int32_t *xyz_data) { struct als_drv_data_t *als_drv_data = TCS3400_DRV_DATA(s); struct tcs3400_rgb_drv_data_t *rgb_drv_data = TCS3400_RGB_DRV_DATA(s+1); const uint8_t calibration_mode = rgb_drv_data->calibration_mode; uint16_t k_channel_scale = als_drv_data->als_cal.channel_scale.k_channel_scale; uint16_t cover_scale = als_drv_data->als_cal.channel_scale.cover_scale; int32_t crgb_data[CRGB_COUNT]; int i; /* adjust for calibration and scale data */ for (i = 0; i < CRGB_COUNT; i++) { int index = i * 2; /* assemble the light value for this channel */ crgb_data[i] = raw_light_data[i] = ((raw_data_buf[index+1] << 8) | raw_data_buf[index]); /* in calibration mode, we only assemble the raw data */ if (calibration_mode) continue; /* rgb data at index 1, 2, and 3 owned by rgb driver, not ALS */ if (i > 0) { struct als_channel_scale_t *csp = &rgb_drv_data->calibration.rgb_cal[i-1].scale; k_channel_scale = csp->k_channel_scale; cover_scale = csp->cover_scale; } /* Step 1: divide by individual channel scale value */ crgb_data[i] = SENSOR_APPLY_DIV_SCALE(crgb_data[i], k_channel_scale); /* compensate for the light cover */ crgb_data[i] = SENSOR_APPLY_SCALE(crgb_data[i], cover_scale); } if (!calibration_mode) { /* we're not in calibration mode & we want xyz translation */ tcs3400_translate_to_xyz(s, crgb_data, xyz_data); } else { /* normalize the data for atime and again changes */ for (i = 0; i < CRGB_COUNT; i++) crgb_data[i] = normalize_channel_data(s, crgb_data[i]); /* calibration mode returns raw data */ for (i = 0; i < 3; i++) xyz_data[i] = crgb_data[i+1]; } } static int32_t get_lux_from_xyz(struct motion_sensor_t *s, int32_t *xyz_data) { int32_t lux = xyz_data[Y]; const int32_t offset = TCS3400_RGB_DRV_DATA(s+1)->calibration.rgb_cal[Y].offset; /* * Do not include the offset when determining LUX from XYZ. */ lux = MAX(0, lux - offset); return lux; } static bool is_spoof(struct motion_sensor_t *s) { return IS_ENABLED(CONFIG_ACCEL_SPOOF_MODE) && (s->flags & MOTIONSENSE_FLAG_IN_SPOOF_MODE); } static int tcs3400_post_events(struct motion_sensor_t *s, uint32_t last_ts, uint32_t status) { /* * Rule says RGB sensor is right after ALS sensor. * This routine will only get called from ALS sensor driver. */ struct motion_sensor_t *rgb_s = s + 1; const uint8_t is_calibration = TCS3400_RGB_DRV_DATA(rgb_s)->calibration_mode; struct ec_response_motion_sensor_data vector = { .flags = 0, }; uint8_t buf[TCS_RGBC_DATA_SIZE]; /* holds raw data read from chip */ int32_t xyz_data[3] = { 0, 0, 0 }; uint16_t raw_data[CRGB_COUNT]; /* holds raw CRGB assembled from buf[] */ int *last_v; int32_t lux = 0; int ret; if (IS_ENABLED(CONFIG_ALS_TCS3400_EMULATED_IRQ_EVENT)) { int i = 5; /* 100ms max */ while (i--) { /* Make sure data is valid */ if (status & TCS_I2C_STATUS_RGBC_VALID) break; msleep(20); /* * When not in interrupt mode, we could have scheduled * the handler too early. */ ret = tcs3400_i2c_read8(s, TCS_I2C_STATUS, &status); if (ret) return ret; } if (i < 0) { CPRINTS("RGBC invalid (0x%x)", status); return EC_ERROR_UNCHANGED; } } /* Read the light registers */ ret = i2c_read_block(s->port, s->i2c_spi_addr_flags, TCS_DATA_START_LOCATION, buf, sizeof(buf)); if (ret) return ret; /* Process the raw light data, adjusting for scale and calibration */ tcs3400_process_raw_data(s, buf, raw_data, xyz_data); /* get lux value */ lux = is_calibration ? xyz_data[Y] : get_lux_from_xyz(s, xyz_data); /* if clear channel data changed, send illuminance upstream */ last_v = s->raw_xyz; if (is_calibration || ((raw_data[CLEAR_CRGB_IDX] != TCS_SATURATION_LEVEL) && (last_v[X] != lux))) { if (is_spoof(s)) last_v[X] = s->spoof_xyz[X]; else last_v[X] = is_calibration ? raw_data[CLEAR_CRGB_IDX] : lux; vector.udata[X] = ec_motion_sensor_clamp_u16(last_v[X]); vector.udata[Y] = 0; vector.udata[Z] = 0; if (IS_ENABLED(CONFIG_ACCEL_FIFO)) { vector.sensor_num = s - motion_sensors; motion_sense_fifo_stage_data(&vector, s, 3, last_ts); } } /* * If rgb channel data changed since last sample and didn't saturate, * send it upstream */ last_v = rgb_s->raw_xyz; if (is_calibration || (((last_v[X] != xyz_data[X]) || (last_v[Y] != xyz_data[Y]) || (last_v[Z] != xyz_data[Z])) && ((raw_data[RED_CRGB_IDX] != TCS_SATURATION_LEVEL) && (raw_data[BLUE_CRGB_IDX] != TCS_SATURATION_LEVEL) && (raw_data[GREEN_CRGB_IDX] != TCS_SATURATION_LEVEL)))) { if (is_spoof(rgb_s)) { memcpy(last_v, rgb_s->spoof_xyz, sizeof(rgb_s->spoof_xyz)); } else if (is_calibration) { last_v[0] = raw_data[RED_CRGB_IDX]; last_v[1] = raw_data[GREEN_CRGB_IDX]; last_v[2] = raw_data[BLUE_CRGB_IDX]; } else { memcpy(last_v, xyz_data, sizeof(xyz_data)); } ec_motion_sensor_clamp_u16s(vector.udata, last_v); if (IS_ENABLED(CONFIG_ACCEL_FIFO)) { vector.sensor_num = rgb_s - motion_sensors; motion_sense_fifo_stage_data(&vector, rgb_s, 3, last_ts); } } if (IS_ENABLED(CONFIG_ACCEL_FIFO)) motion_sense_fifo_commit_data(); if (!is_calibration) ret = tcs3400_adjust_sensor_for_saturation(s, xyz_data[Y], raw_data, status); return ret; } void tcs3400_interrupt(enum gpio_signal signal) { if (IS_ENABLED(CONFIG_ACCEL_FIFO)) last_interrupt_timestamp = __hw_clock_source_read(); task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ALS_TCS3400_INT_EVENT); } /* * tcs3400_irq_handler - bottom half of the interrupt stack. * Ran from the motion_sense task, finds the events that raised the interrupt, * and posts those events via motion_sense_fifo_stage_data().. * * This routine will get called for the TCS3400 ALS driver, but NOT for the * RGB driver. We harvest data for both drivers in this routine. The RGB * driver is guaranteed to directly follow the ALS driver in the sensor list * (i.e rgb's motion_sensor_t structure can be found at (s+1) ). */ static int tcs3400_irq_handler(struct motion_sensor_t *s, uint32_t *event) { uint32_t status = 0; int ret; if (!(*event & CONFIG_ALS_TCS3400_INT_EVENT)) return EC_ERROR_NOT_HANDLED; ret = tcs3400_i2c_read8(s, TCS_I2C_STATUS, &status); if (ret) return ret; /* Disable future interrupts */ ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_IDLE); if (ret) return ret; if ((status & TCS_I2C_STATUS_RGBC_VALID) || IS_ENABLED(CONFIG_ALS_TCS3400_EMULATED_IRQ_EVENT)) { ret = tcs3400_post_events(s, last_interrupt_timestamp, status); if (ret) return ret; } tcs3400_i2c_write8(s, TCS_I2C_AICLEAR, 0); /* Disable ADC and turn off internal oscillator */ ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, TCS3400_MODE_SUSPEND); if (ret) return ret; return EC_SUCCESS; } static int tcs3400_rgb_get_scale(const struct motion_sensor_t *s, uint16_t *scale, int16_t *temp) { struct rgb_channel_calibration_t *rgb_cal = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal; scale[X] = rgb_cal[RED_RGB_IDX].scale.k_channel_scale; scale[Y] = rgb_cal[GREEN_RGB_IDX].scale.k_channel_scale; scale[Z] = rgb_cal[BLUE_RGB_IDX].scale.k_channel_scale; *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; return EC_SUCCESS; } static int tcs3400_rgb_set_scale(const struct motion_sensor_t *s, const uint16_t *scale, int16_t temp) { struct rgb_channel_calibration_t *rgb_cal = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal; if (scale[X] == 0 || scale[Y] == 0 || scale[Z] == 0) return EC_ERROR_INVAL; rgb_cal[RED_RGB_IDX].scale.k_channel_scale = scale[X]; rgb_cal[GREEN_RGB_IDX].scale.k_channel_scale = scale[Y]; rgb_cal[BLUE_RGB_IDX].scale.k_channel_scale = scale[Z]; return EC_SUCCESS; } static int tcs3400_rgb_get_offset(const struct motion_sensor_t *s, int16_t *offset, int16_t *temp) { offset[X] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[X].offset; offset[Y] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[Y].offset; offset[Z] = TCS3400_RGB_DRV_DATA(s)->calibration.rgb_cal[Z].offset; *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; return EC_SUCCESS; } static int tcs3400_rgb_set_offset(const struct motion_sensor_t *s, const int16_t *offset, int16_t temp) { /* do not allow offset to be changed, it's predetermined */ return EC_SUCCESS; } static int tcs3400_rgb_set_data_rate(const struct motion_sensor_t *s, int rate, int rnd) { return EC_SUCCESS; } /* Enable/disable special factory calibration mode */ static int tcs3400_perform_calib(struct motion_sensor_t *s, int enable) { TCS3400_RGB_DRV_DATA(s+1)->calibration_mode = enable; return EC_SUCCESS; } static int tcs3400_rgb_set_range(struct motion_sensor_t *s, int range, int rnd) { return EC_SUCCESS; } static int tcs3400_set_range(struct motion_sensor_t *s, int range, int rnd) { TCS3400_DRV_DATA(s)->als_cal.scale = range >> 16; TCS3400_DRV_DATA(s)->als_cal.uscale = range & 0xffff; s->current_range = range; return EC_SUCCESS; } static int tcs3400_get_scale(const struct motion_sensor_t *s, uint16_t *scale, int16_t *temp) { scale[X] = TCS3400_DRV_DATA(s)->als_cal.channel_scale.k_channel_scale; scale[Y] = 0; scale[Z] = 0; *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; return EC_SUCCESS; } static int tcs3400_set_scale(const struct motion_sensor_t *s, const uint16_t *scale, int16_t temp) { if (scale[X] == 0) return EC_ERROR_INVAL; TCS3400_DRV_DATA(s)->als_cal.channel_scale.k_channel_scale = scale[X]; return EC_SUCCESS; } static int tcs3400_get_offset(const struct motion_sensor_t *s, int16_t *offset, int16_t *temp) { offset[X] = TCS3400_DRV_DATA(s)->als_cal.offset; offset[Y] = 0; offset[Z] = 0; *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; return EC_SUCCESS; } static int tcs3400_set_offset(const struct motion_sensor_t *s, const int16_t *offset, int16_t temp) { /* do not allow offset to be changed, it's predetermined */ return EC_SUCCESS; } static int tcs3400_get_data_rate(const struct motion_sensor_t *s) { return TCS3400_DRV_DATA(s)->rate; } static int tcs3400_rgb_get_data_rate(const struct motion_sensor_t *s) { return tcs3400_get_data_rate(s - 1); } static int tcs3400_set_data_rate(const struct motion_sensor_t *s, int rate, int rnd) { enum tcs3400_mode mode; int data; int ret; if (rate == 0) { /* Suspend driver */ mode = TCS3400_MODE_SUSPEND; } else { /* * We set the sensor for continuous mode, * integrating over 800ms. * Do not allow range higher than 1Hz. */ if (rate > TCS3400_LIGHT_MAX_FREQ) rate = TCS3400_LIGHT_MAX_FREQ; mode = TCS3400_MODE_COLLECTING; } TCS3400_DRV_DATA(s)->rate = rate; ret = tcs3400_i2c_read8(s, TCS_I2C_ENABLE, &data); if (ret) return ret; data = (data & TCS_I2C_ENABLE_MASK) | mode; ret = tcs3400_i2c_write8(s, TCS_I2C_ENABLE, data); return ret; } /** * Initialise TCS3400 light sensor. */ static int tcs3400_rgb_init(struct motion_sensor_t *s) { return EC_SUCCESS; } static int tcs3400_init(struct motion_sensor_t *s) { /* * These are default power-on register values with two exceptions: * Set ATIME = 0 (712 ms) * Set AGAIN = 16 (0x10) (AGAIN is in CONTROL register) */ const struct reg_data { uint8_t reg; uint8_t data; } defaults[] = { { TCS_I2C_ENABLE, 0 }, { TCS_I2C_ATIME, TCS_DEFAULT_ATIME }, { TCS_I2C_WTIME, 0xFF }, { TCS_I2C_AILTL, 0 }, { TCS_I2C_AILTH, 0 }, { TCS_I2C_AIHTL, 0 }, { TCS_I2C_AIHTH, 0 }, { TCS_I2C_PERS, 0 }, { TCS_I2C_CONFIG, 0x40 }, { TCS_I2C_CONTROL, (TCS_DEFAULT_AGAIN & TCS_I2C_CONTROL_MASK) }, { TCS_I2C_AUX, 0 }, { TCS_I2C_IR, 0 }, { TCS_I2C_CICLEAR, 0 }, { TCS_I2C_AICLEAR, 0 } }; int data = 0; int ret; ret = tcs3400_i2c_read8(s, TCS_I2C_ID, &data); if (ret) { CPRINTS("failed reading ID reg 0x%x, ret=%d", TCS_I2C_ID, ret); return ret; } if ((data != TCS340015_DEVICE_ID) && (data != TCS340037_DEVICE_ID)) { CPRINTS("no ID match, data = 0x%x", data); return EC_ERROR_ACCESS_DENIED; } /* reset chip to default power-on settings, changes ATIME and CONTROL */ for (int x = 0; x < ARRAY_SIZE(defaults); x++) { ret = tcs3400_i2c_write8(s, defaults[x].reg, defaults[x].data); if (ret) return ret; } return sensor_init_done(s); } const struct accelgyro_drv tcs3400_drv = { .init = tcs3400_init, .read = tcs3400_read, .set_range = tcs3400_set_range, .set_offset = tcs3400_set_offset, .get_offset = tcs3400_get_offset, .set_scale = tcs3400_set_scale, .get_scale = tcs3400_get_scale, .set_data_rate = tcs3400_set_data_rate, .get_data_rate = tcs3400_get_data_rate, .perform_calib = tcs3400_perform_calib, #ifdef CONFIG_ACCEL_INTERRUPTS .irq_handler = tcs3400_irq_handler, #endif }; const struct accelgyro_drv tcs3400_rgb_drv = { .init = tcs3400_rgb_init, .read = tcs3400_rgb_read, .set_range = tcs3400_rgb_set_range, .set_offset = tcs3400_rgb_set_offset, .get_offset = tcs3400_rgb_get_offset, .set_scale = tcs3400_rgb_set_scale, .get_scale = tcs3400_rgb_get_scale, .set_data_rate = tcs3400_rgb_set_data_rate, .get_data_rate = tcs3400_rgb_get_data_rate, };