/* Copyright 2014 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef __CROS_EC_ACCELGYRO_H #define __CROS_EC_ACCELGYRO_H #include "motion_sense.h" #include "math_util.h" /* Header file for accelerometer / gyro drivers. */ /* * EC reports sensor data on 16 bits. For accel/gyro/mag.. the MSB is the sign. * For instance, for gravity, * real_value[in g] = measured_value * range >> 15 */ #define MOTION_SCALING_FACTOR (1 << 15) #define MOTION_ONE_G (9.80665f) struct accelgyro_drv { /** * Initialize accelerometers. * @s Pointer to sensor data pointer. * @return EC_SUCCESS if successful, non-zero if error. */ int (*init)(struct motion_sensor_t *s); /** * Read all three accelerations of an accelerometer. Note that all * three accelerations come back in counts, where ACCEL_G can be used * to convert counts to engineering units. * @s Pointer to sensor data. * @v Vector to store acceleration (in units of counts). * @return EC_SUCCESS if successful, non-zero if error. */ int (*read)(const struct motion_sensor_t *s, intv3_t v); /** * Read the sensor's current internal temperature. * * @param s Pointer to sensor data. * @param temp Pointer to store temperature in degrees Kelvin. * @return EC_SUCCESS if successful, non-zero if error. */ int (*read_temp)(const struct motion_sensor_t *s, int *temp); /** * Setter method for the sensor range. The sensor range * defines the maximum value that can be returned from read(). As the * range increases, the resolution gets worse. * @s Pointer to sensor data. * @range Range (Units are +/- G's for accel, +/- deg/s for gyro) * @rnd Rounding flag. If true, it rounds up to nearest valid * value. Otherwise, it rounds down. * * sensor->current_range is updated. * It will be preserved unless EC reboots or AP is shutdown (S5). * * @return EC_SUCCESS if successful, non-zero if error. */ int (*set_range)(struct motion_sensor_t *s, int range, int rnd); /** * Setter and getter methods for the sensor resolution. * @s Pointer to sensor data. * @range Resolution (Units are number of bits) * param rnd Rounding flag. If true, it rounds up to nearest valid * value. Otherwise, it rounds down. * @return EC_SUCCESS if successful, non-zero if error. */ int (*set_resolution)(const struct motion_sensor_t *s, int res, int rnd); int (*get_resolution)(const struct motion_sensor_t *s); /** * Setter and getter methods for the sensor output data range. As the * ODR increases, the LPF roll-off frequency also increases. * @s Pointer to sensor data. * @rate Output data rate (units are milli-Hz) * @rnd Rounding flag. If true, it rounds up to nearest valid * value. Otherwise, it rounds down. * @return EC_SUCCESS if successful, non-zero if error. */ int (*set_data_rate)(const struct motion_sensor_t *s, int rate, int rnd); int (*get_data_rate)(const struct motion_sensor_t *s); /** * Setter and getter methods for the sensor offset. * @s Pointer to sensor data. * @offset: offset to apply to raw data. * @temp: temperature when calibration was done. * @return EC_SUCCESS if successful, non-zero if error. */ int (*set_offset)(const struct motion_sensor_t *s, const int16_t *offset, int16_t temp); int (*get_offset)(const struct motion_sensor_t *s, int16_t *offset, int16_t *temp); /** * Setter and getter methods for the sensor scale. * @s Pointer to sensor data. * @scale: scale to apply to raw data. * @temp: temperature when calibration was done. * @return EC_SUCCESS if successful, non-zero if error. */ int (*set_scale)(const struct motion_sensor_t *s, const uint16_t *scale, int16_t temp); int (*get_scale)(const struct motion_sensor_t *s, uint16_t *scale, int16_t *temp); /** * Request performing/entering calibration. * Either a one shot mode (enable is not used), * or enter/exit a calibration state. */ int (*perform_calib)(struct motion_sensor_t *s, int enable); /** * handler for interrupts triggered by the sensor: it runs in task and * process the events that triggered an interrupt. * @s Pointer to sensor data. * @event Event to process. May add other events for the next processor. * * Return EC_SUCCESS when one event is handled, EC_ERROR_NOT_HANDLED * when no events have been processed. */ int (*irq_handler)(struct motion_sensor_t *s, uint32_t *event); /** * handler for setting/getting activity information. * Manage the high level activity detection of the chip. * @s Pointer to sensor data. * @activity activity to work on * @enable 1 to enable, 0 to disable * @data additional data if needed, activity dependent. */ int (*manage_activity)(const struct motion_sensor_t *s, enum motionsensor_activity activity, int enable, const struct ec_motion_sense_activity *data); /** * List activities managed by the sensors. * @s Pointer to sensor data. * @enable bit mask of activities currently enabled. * @disabled bit mask of activities currently disabled. */ int (*list_activities)(const struct motion_sensor_t *s, uint32_t *enabled, uint32_t *disabled); /** * Get the root mean square of current noise (ug/mdps) in the sensor. */ int (*get_rms_noise)(const struct motion_sensor_t *s); }; /* Index values for rgb_calibration_t.coeff array */ enum xyz_coeff_index { TCS_CLEAR_COEFF_IDX = 0, TCS_RED_COEFF_IDX, TCS_GREEN_COEFF_IDX, TCS_BLUE_COEFF_IDX, COEFF_CHANNEL_COUNT, }; /* Index values for rgb_scale array */ enum rgb_index { RED_RGB_IDX = 0, GREEN_RGB_IDX, BLUE_RGB_IDX, RGB_CHANNEL_COUNT }; /* Used to save sensor information */ struct accelgyro_saved_data_t { int odr; uint16_t scale[3]; }; /* individual channel cover scaling and k factors */ struct als_channel_scale_t { uint16_t k_channel_scale; /* Cover compensation scale factor */ uint16_t cover_scale; }; /* Calibration data */ struct als_calibration_t { /* * Scale, uscale, and offset are used to correct the raw 16 bit ALS * data and then to convert it to 32 bit using the following equations: * raw_value += offset; * adjusted_value = raw_value * scale + raw_value * uscale / 10000; */ uint16_t scale; uint16_t uscale; int16_t offset; struct als_channel_scale_t channel_scale; }; /* RGB ALS Calibration Data */ struct rgb_channel_calibration_t { /* * Each channel has scaling factor for normalization & cover */ struct als_channel_scale_t scale; /* Any offset to add to raw channel data */ int16_t offset; /* Clear, R, G, and B coefficients for this channel */ fp_t coeff[COEFF_CHANNEL_COUNT]; }; struct rgb_calibration_t { struct rgb_channel_calibration_t rgb_cal[RGB_CHANNEL_COUNT]; /* incandecent scaling factor */ fp_t irt; }; /* als driver data */ struct als_drv_data_t { int rate; /* holds current sensor rate */ int last_value; /* holds last als clear channel value */ struct als_calibration_t als_cal; /* calibration data */ }; #define SENSOR_APPLY_DIV_SCALE(_input, _scale) \ (((_input) * (uint64_t)MOTION_SENSE_DEFAULT_SCALE) / (_scale)) #define SENSOR_APPLY_SCALE(_input, _scale) \ (((_input) * (uint64_t)(_scale)) / MOTION_SENSE_DEFAULT_SCALE) /* Individual channel scale value between 0 and 2 represented in 16 bits */ #define ALS_CHANNEL_SCALE(_x) ((_x) * MOTION_SENSE_DEFAULT_SCALE) #endif /* __CROS_EC_ACCELGYRO_H */