/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* * GAIA SoC power sequencing module for Chrome EC * * This implements the following features: * * - Cold reset powers off the AP * * When powered off: * - Press pwron turns on the AP * - Hold pwron turns on the AP, and then 16s later turns it off and leaves * it off until pwron is released and pressed again * * When powered on: * - The PMIC PWRON signal is released <= 1 second after the power button is * released (we expect that U-Boot as asserted XPSHOLD by then) * - Holding pwron for 8s powers off the AP * - Pressing and releasing pwron within that 8s is ignored * - If XPSHOLD is dropped by the AP, then we power the AP off */ #include "clock.h" #include "chipset.h" /* This module implements chipset functions too */ #include "common.h" #include "console.h" #include "gpio.h" #include "hooks.h" #include "lid_switch.h" #include "keyboard_scan.h" #include "power_led.h" #include "pmu_tpschrome.h" #include "system.h" #include "task.h" #include "timer.h" #include "util.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_CHIPSET, outstr) #define CPRINTF(format, args...) cprintf(CC_CHIPSET, format, ## args) /* Time necessary for the 5V and 3.3V regulator outputs to stabilize */ #ifdef BOARD_PIT #define DELAY_5V_SETUP (2 * MSEC) #define DELAY_3V_SETUP (2 * MSEC) #else #define DELAY_5V_SETUP MSEC #endif /* Delay between 1.35v and 3.3v rails startup */ #define DELAY_RAIL_STAGGERING 100 /* 100us */ /* Long power key press to force shutdown */ #define DELAY_FORCE_SHUTDOWN (8 * SECOND) /* Time necessary for pulling down XPSHOLD to shutdown PMIC power */ #define DELAY_XPSHOLD_PULL (2 * MSEC) /* * If the power key is pressed to turn on, then held for this long, we * power off. * * The idea here is that behavior for 8s for AP shutdown is unchanged * but power-on is modified to allow enough time U-Boot to be updated * via USB (which takes about 10sec). * * So after power button is pressed: * Normal case: User releases power button and chipset_task() goes * into the inner loop, waiting for next event to occur (power button * press or XPSHOLD == 0). * * U-Boot updating: User presses and holds power button. If EC does not * see XPSHOLD, it waits up to 16sec for an event. If no event occurs * within 16sec, EC powers off AP. */ #define DELAY_SHUTDOWN_ON_POWER_HOLD (8 * SECOND) #define DELAY_SHUTDOWN_ON_USB_BOOT (16 * SECOND) /* Maximum delay after power button press before we deassert GPIO_PMIC_PWRON */ #define DELAY_RELEASE_PWRON SECOND /* 1s */ /* debounce time to prevent accidental power-on after keyboard power off */ #define KB_PWR_ON_DEBOUNCE 250 /* 250us */ /* debounce time to prevent accidental power event after lid open/close */ #define LID_SWITCH_DEBOUNCE 250 /* 250us */ /* PMIC fails to set the LDO2 output */ #define PMIC_TIMEOUT (100 * MSEC) /* 100ms */ /* Default timeout for input transition */ #define FAIL_TIMEOUT (500 * MSEC) /* 500ms */ /* Application processor power state */ static int ap_on; static int ap_suspended; /* simulated event state */ static int force_signal = -1; static int force_value; /* 1 if the power button was pressed last time we checked */ static char power_button_was_pressed; /* 1 if lid-open event has been detected */ static char lid_opened; /* time where we will power off, if power button still held down */ static timestamp_t power_off_deadline; /* force AP power on (used for recovery keypress) */ static int auto_power_on; enum power_request_t { POWER_REQ_NONE, POWER_REQ_OFF, POWER_REQ_ON, POWER_REQ_COUNT, }; static enum power_request_t power_request; /** * Wait for GPIO "signal" to reach level "value". * Returns EC_ERROR_TIMEOUT if timeout before reaching the desired state. * * @param signal Signal to watch * @param value Value to watch for * @param timeout Timeout in microseconds from now, or -1 to wait forever * @return 0 if signal did change to required value, EC_ERROR_TIMEOUT if we * timed out first. */ static int wait_in_signal(enum gpio_signal signal, int value, int timeout) { timestamp_t deadline; timestamp_t now = get_time(); deadline.val = now.val + timeout; while (((force_signal != signal) || (force_value != value)) && gpio_get_level(signal) != value) { now = get_time(); if (timeout < 0) { task_wait_event(-1); } else if (timestamp_expired(deadline, &now) || (task_wait_event(deadline.val - now.val) == TASK_EVENT_TIMER)) { CPRINTF("[%T power timeout waiting for GPIO %d/%s]\n", signal, gpio_get_name(signal)); return EC_ERROR_TIMEOUT; } } return EC_SUCCESS; } /** * Set the PMIC PWROK signal. * * @param asserted Assert (=1) or deassert (=0) the signal. This is the * logical level of the pin, not the physical level. */ static void set_pmic_pwrok(int asserted) { #ifdef BOARD_PIT /* Signal is active-high */ gpio_set_level(GPIO_PMIC_PWRON, asserted); #else /* Signal is active-low */ gpio_set_level(GPIO_PMIC_PWRON_L, asserted ? 0 : 1); #endif } /** * Check for some event triggering the shutdown. * * It can be either a long power button press or a shutdown triggered from the * AP and detected by reading XPSHOLD. * * @return 1 if a shutdown should happen, 0 if not */ static int check_for_power_off_event(void) { timestamp_t now; int pressed = 0; /* Check for power button press */ if (gpio_get_level(GPIO_KB_PWR_ON_L) == 0) { udelay(KB_PWR_ON_DEBOUNCE); if (gpio_get_level(GPIO_KB_PWR_ON_L) == 0) pressed = 1; } #ifdef HAS_TASK_KEYSCAN /* Dis/Enable keyboard scanning when the power button state changes */ if (!pressed || pressed != power_button_was_pressed) keyboard_scan_enable(!pressed); #endif now = get_time(); if (pressed) { set_pmic_pwrok(1); if (!power_button_was_pressed) { power_off_deadline.val = now.val + DELAY_FORCE_SHUTDOWN; CPRINTF("[%T power waiting for long press %u]\n", power_off_deadline.le.lo); } else if (timestamp_expired(power_off_deadline, &now)) { power_off_deadline.val = 0; CPRINTF("[%T power off after long press now=%u, %u]\n", now.le.lo, power_off_deadline.le.lo); return 2; } } else if (power_button_was_pressed) { CPRINTF("[%T power off cancel]\n"); set_pmic_pwrok(0); } power_button_was_pressed = pressed; /* XPSHOLD released by AP : shutdown immediately */ if (gpio_get_level(GPIO_SOC1V8_XPSHOLD) == 0) return 3; if (power_request == POWER_REQ_OFF) { power_request = POWER_REQ_NONE; return 4; } return 0; } /** * Deferred handling for suspend events * * The suspend event needs to be able to call the suspend and resume hooks. * This cannot be done from interrupt level, since the handlers from those * hooks may need to use mutexes or other functionality not present at * interrupt level. Use a deferred function instead. * * Deferred functions are called from the hook task and not the chipset task, * so that's a slight deviation from the spec in hooks.h, but a minor one. */ static void gaia_suspend_deferred(void) { int new_ap_suspended; if (!ap_on) /* power on/off : not a real suspend / resume */ return; /* * Note: For Snow, suspend state can only be reliably * determined when the AP is on (crosbug.com/p/13200). */ new_ap_suspended = !gpio_get_level(GPIO_SUSPEND_L); /* We never want to call two suspend or two resumes in a row */ if (ap_suspended == new_ap_suspended) return; ap_suspended = new_ap_suspended; if (ap_suspended) { if (lid_is_open()) powerled_set_state(POWERLED_STATE_SUSPEND); else powerled_set_state(POWERLED_STATE_OFF); /* Call hooks here since we don't know it prior to AP suspend */ hook_notify(HOOK_CHIPSET_SUSPEND); } else { powerled_set_state(POWERLED_STATE_ON); hook_notify(HOOK_CHIPSET_RESUME); } } DECLARE_DEFERRED(gaia_suspend_deferred); void power_signal_interrupt(enum gpio_signal signal) { if (signal == GPIO_SUSPEND_L) { /* Handle suspend events in the hook task */ hook_call_deferred(gaia_suspend_deferred, 0); } else { /* All other events are handled in the chipset task */ task_wake(TASK_ID_CHIPSET); } } static void gaia_lid_event(void) { /* Power task only cares about lid-open events */ if (!lid_is_open()) return; lid_opened = 1; task_wake(TASK_ID_CHIPSET); } DECLARE_HOOK(HOOK_LID_CHANGE, gaia_lid_event, HOOK_PRIO_DEFAULT); static int gaia_power_init(void) { /* Enable interrupts for our GPIOs */ gpio_enable_interrupt(GPIO_KB_PWR_ON_L); gpio_enable_interrupt(GPIO_SOC1V8_XPSHOLD); gpio_enable_interrupt(GPIO_SUSPEND_L); gpio_enable_interrupt(GPIO_PP1800_LDO2); /* Leave power off only if requested by reset flags */ if (!(system_get_reset_flags() & RESET_FLAG_AP_OFF)) { CPRINTF("[%T auto_power_on is set due to reset_flag 0x%x]\n", system_get_reset_flags()); auto_power_on = 1; } #ifdef BOARD_PIT /* * Force the AP into reset unless we're doing a sysjump. Otherwise a * suspended AP may still be in a strange state from the last reboot, * and will hold XPSHOLD for a long time if it's in a low power state. * See crosbug.com/p/22233. */ if (!(system_get_reset_flags() & RESET_FLAG_SYSJUMP)) { CPRINTF("[%T not sysjump; forcing AP reset]\n"); gpio_set_level(GPIO_AP_RESET_L, 0); udelay(1000); gpio_set_level(GPIO_AP_RESET_L, 1); } #endif return EC_SUCCESS; } /*****************************************************************************/ /* Chipset interface */ int chipset_in_state(int state_mask) { /* If AP is off, match any off state for now */ if ((state_mask & CHIPSET_STATE_ANY_OFF) && !ap_on) return 1; /* If AP is on, match on state */ if ((state_mask & CHIPSET_STATE_ON) && ap_on && !ap_suspended) return 1; /* if AP is suspended, match on state */ if ((state_mask & CHIPSET_STATE_SUSPEND) && ap_on && ap_suspended) return 1; /* In any other case, we don't have a match */ return 0; } void chipset_exit_hard_off(void) { /* * TODO(crosbug.com/p/23822): Implement, if/when we take the AP down to * a hard-off state. */ } void chipset_reset(int is_cold) { /* * TODO(crosbug.com/p/23822): Implement cold reset. For now, all * resets are warm resets. */ CPRINTF("[%T EC triggered warm reboot]\n"); /* * This is a hack to do an AP warm reboot while still preserving RAM * contents. This is useful for looking at kernel log message contents * from previous boot in cases where the AP/OS is hard hung. */ #ifdef CONFIG_CHIPSET_HAS_PP5000 gpio_set_level(GPIO_EN_PP5000, 0); #endif gpio_set_level(GPIO_EN_PP3300, 0); power_request = POWER_REQ_ON; task_wake(TASK_ID_CHIPSET); } void chipset_force_shutdown(void) { /* Turn off all rails */ gpio_set_level(GPIO_EN_PP3300, 0); #ifdef CONFIG_CHIPSET_HAS_PP1350 /* * Turn off PP1350 unless we're immediately waking back up. This * works with the hack in chipset_reset() to preserve the contents of * RAM across a reset. */ if (power_request != POWER_REQ_ON) gpio_set_level(GPIO_EN_PP1350, 0); #endif set_pmic_pwrok(0); #ifdef CONFIG_CHIPSET_HAS_PP5000 gpio_set_level(GPIO_EN_PP5000, 0); #endif #ifdef BOARD_PIT /* * Force the AP into reset. Otherwise it will hold XPSHOLD for a long * time if it's in a low power state. See crosbug.com/p/22233. */ gpio_set_level(GPIO_AP_RESET_L, 0); udelay(1000); gpio_set_level(GPIO_AP_RESET_L, 1); #endif } /*****************************************************************************/ /** * Check if there has been a power-on event * * This checks all power-on event signals and returns non-zero if any have been * triggered (with debounce taken into account). * * @return non-zero if there has been a power-on event, 0 if not. */ static int check_for_power_on_event(void) { /* Check if we've already powered the system on */ if (gpio_get_level(GPIO_EN_PP3300)) { CPRINTF("[%T system is on, thus clear auto_power_on]\n"); auto_power_on = 0; /* no need to arrange another power on */ return 1; } /* power on requested at EC startup for recovery */ if (auto_power_on) { auto_power_on = 0; return 2; } /* Check lid open */ if (lid_opened) { lid_opened = 0; return 3; } /* check for power button press */ if (gpio_get_level(GPIO_KB_PWR_ON_L) == 0) { udelay(KB_PWR_ON_DEBOUNCE); if (gpio_get_level(GPIO_KB_PWR_ON_L) == 0) return 4; } if (power_request == POWER_REQ_ON) { power_request = POWER_REQ_NONE; return 5; } return 0; } /** * Power on the AP * * @return 0 if ok, -1 on error (PP1800_LDO2 failed to come on) */ static int power_on(void) { #ifdef CONFIG_CHIPSET_HAS_PP5000 /* Enable 5v power rail */ gpio_set_level(GPIO_EN_PP5000, 1); /* Wait for it to stabilize */ usleep(DELAY_5V_SETUP); #endif #ifdef BOARD_PIT /* * 3.3V rail must come up right after 5V, because it sources power to * various buck supplies. */ gpio_set_level(GPIO_EN_PP3300, 1); usleep(DELAY_3V_SETUP); #endif if (gpio_get_level(GPIO_SOC1V8_XPSHOLD) == 0) { /* Initialize non-AP components */ hook_notify(HOOK_CHIPSET_PRE_INIT); /* * Initiate PMIC power-on sequence only if cold booting AP to * avoid accidental reset (crosbug.com/p/12650). */ set_pmic_pwrok(1); } /* wait for all PMIC regulators to be ready */ wait_in_signal(GPIO_PP1800_LDO2, 1, PMIC_TIMEOUT); /* * If PP1800_LDO2 did not come up (e.g. PMIC_TIMEOUT was reached), * turn off 5V rail (and 3.3V, if turned on above) and start over. */ if (gpio_get_level(GPIO_PP1800_LDO2) == 0) { gpio_set_level(GPIO_EN_PP5000, 0); gpio_set_level(GPIO_EN_PP3300, 0); usleep(DELAY_5V_SETUP); CPRINTF("[%T power error: PMIC failed to enable]\n"); return -1; } /* Enable DDR 1.35v power rail */ gpio_set_level(GPIO_EN_PP1350, 1); /* Wait to avoid large inrush current */ usleep(DELAY_RAIL_STAGGERING); /* Enable 3.3v power rail, if it's not already on */ gpio_set_level(GPIO_EN_PP3300, 1); ap_on = 1; disable_sleep(SLEEP_MASK_AP_RUN); powerled_set_state(POWERLED_STATE_ON); /* Call hooks now that AP is running */ hook_notify(HOOK_CHIPSET_STARTUP); CPRINTF("[%T AP running ...]\n"); return 0; } /** * Wait for the power button to be released * * @return 0 if ok, -1 if power button failed to release */ static int wait_for_power_button_release(unsigned int timeout_us) { /* wait for Power button release */ wait_in_signal(GPIO_KB_PWR_ON_L, 1, timeout_us); udelay(KB_PWR_ON_DEBOUNCE); if (gpio_get_level(GPIO_KB_PWR_ON_L) == 0) { CPRINTF("[%T power button not released in time]\n"); return -1; } CPRINTF("[%T power button released]\n"); return 0; } /** * Wait for the XPSHOLD signal from the AP to be asserted within timeout_us * and if asserted clear the PMIC_PWRON signal * * @return 0 if ok, -1 if power button failed to release */ static int react_to_xpshold(unsigned int timeout_us) { /* wait for Power button release */ wait_in_signal(GPIO_SOC1V8_XPSHOLD, 1, timeout_us); if (gpio_get_level(GPIO_SOC1V8_XPSHOLD) == 0) { CPRINTF("[%T XPSHOLD not seen in time]\n"); return -1; } CPRINTF("[%T XPSHOLD seen]\n"); set_pmic_pwrok(0); return 0; } /** * Power off the AP */ static void power_off(void) { /* Call hooks before we drop power rails */ hook_notify(HOOK_CHIPSET_SHUTDOWN); /* switch off all rails */ chipset_force_shutdown(); ap_on = 0; ap_suspended = 0; lid_opened = 0; enable_sleep(SLEEP_MASK_AP_RUN); powerled_set_state(POWERLED_STATE_OFF); #ifdef CONFIG_PMU_TPS65090 pmu_shutdown(); #endif CPRINTF("[%T power shutdown complete]\n"); } /* * Calculates the delay in microseconds to the next time we have to check * for a power event, * *@return delay to next check, or -1 if no future check is needed */ static int next_pwr_event(void) { if (!power_off_deadline.val) return -1; return power_off_deadline.val - get_time().val; } /*****************************************************************************/ static int wait_for_power_on(void) { int value; while (1) { value = check_for_power_on_event(); if (!value) { task_wait_event(-1); continue; } #ifdef HAS_TASK_CHARGER /* * If the system is already on (value == 1), the kernel * would handle low power condition and we should not * shutdown the system from EC. */ if (value != 1 && charge_keep_power_off()) { CPRINTF("[%T power on ignored due to low battery]\n"); continue; } #endif CPRINTF("[%T power on %d]\n", value); return value; } } void chipset_task(void) { int value; gaia_power_init(); ap_on = 0; while (1) { /* Wait until we need to power on, then power on */ wait_for_power_on(); if (!power_on()) { int continue_power = 0; if (!react_to_xpshold(DELAY_RELEASE_PWRON)) { /* AP looks good */ if (!wait_for_power_button_release( DELAY_SHUTDOWN_ON_POWER_HOLD)) continue_power = 1; } else { /* AP is possibly in bad shape */ /* allow USB boot in 16 secs */ if (!wait_for_power_button_release( DELAY_SHUTDOWN_ON_USB_BOOT)) continue_power = 1; } if (continue_power) { power_button_was_pressed = 0; while (!(value = check_for_power_off_event())) task_wait_event(next_pwr_event()); CPRINTF("[%T power ending loop %d]\n", value); } } power_off(); wait_for_power_button_release(-1); } } /*****************************************************************************/ /* Console debug command */ static int command_force_power(int argc, char **argv) { /* simulate power button pressed */ force_signal = GPIO_KB_PWR_ON_L; force_value = 1; /* Wake up the task */ task_wake(TASK_ID_CHIPSET); /* Wait 100 ms */ msleep(100); /* Release power button */ force_signal = -1; force_value = 0; return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(forcepower, command_force_power, NULL, "Force power on", NULL); static const char *power_req_name[POWER_REQ_COUNT] = { "none", "off", "on", }; /* Power states that we can report */ enum power_state_t { PSTATE_UNKNOWN, PSTATE_OFF, PSTATE_SUSPEND, PSTATE_ON, PSTATE_COUNT, }; static const char * const state_name[] = { "unknown", "off", "suspend", "on", }; static int command_power(int argc, char **argv) { int v; if (argc < 2) { enum power_state_t state; state = PSTATE_UNKNOWN; if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) state = PSTATE_OFF; if (chipset_in_state(CHIPSET_STATE_SUSPEND)) state = PSTATE_SUSPEND; if (chipset_in_state(CHIPSET_STATE_ON)) state = PSTATE_ON; ccprintf("%s\n", state_name[state]); return EC_SUCCESS; } if (!parse_bool(argv[1], &v)) return EC_ERROR_PARAM1; power_request = v ? POWER_REQ_ON : POWER_REQ_OFF; ccprintf("Requesting power %s\n", power_req_name[power_request]); task_wake(TASK_ID_CHIPSET); return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(power, command_power, "on/off", "Turn AP power on/off", NULL);