summaryrefslogtreecommitdiff
path: root/board/keyborg/spi_comm.c
blob: 0b5c55358ca8cd2dd20140b306a5cd17f3d45466 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
/* Stantum board-specific SPI module */

#include "common.h"
#include "debug.h"
#include "dma.h"
#include "master_slave.h"
#include "registers.h"
#include "spi_comm.h"
#include "task.h"
#include "timer.h"
#include "touch_scan.h"
#include "util.h"

#define DUMMY_DATA 0xdd

/* DMA channel option */
static const struct dma_option dma_tx_option = {
	STM32_DMAC_SPI1_TX, (void *)&STM32_SPI1_REGS->dr,
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_16_BIT
};

static const struct dma_option dma_rx_option = {
	STM32_DMAC_SPI1_RX, (void *)&STM32_SPI1_REGS->dr,
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_16_BIT
};

static uint8_t out_msg[SPI_PACKET_MAX_SIZE + 2];
static uint8_t in_msg[SPI_PACKET_MAX_SIZE];

static stm32_spi_regs_t * const spi = STM32_SPI1_REGS;

static inline int wait_for_signal(uint32_t port, uint32_t mask,
				  int value, int timeout_us)
{
	uint32_t start = get_time().le.lo;

	while ((get_time().le.lo - start) < timeout_us) {
		if ((!!(STM32_GPIO_IDR(port) & mask)) == value)
			return EC_SUCCESS;
	}

	return EC_ERROR_TIMEOUT;
}

static volatile uint8_t slave_ready = 1;

static inline int wait_for_slave_ready(int timeout_us)
{
	uint32_t start = get_time().le.lo;

	while ((get_time().le.lo - start) < timeout_us) {
		if (slave_ready) {
			slave_ready = 0; /* Clear for the next event */
			return EC_SUCCESS;
		}
	}

	return EC_ERROR_TIMEOUT;
}

/*****************************************************************************/
/* Master */

void spi_master_init(void)
{
	/*
	 * CLK:  AFIO Push-pull
	 * MISO: Input
	 * MOSI: AFIO Push-pull
	 */
	STM32_GPIO_CRL(GPIO_A) = (STM32_GPIO_CRL(GPIO_A) & 0x0ff00fff) |
				 0xb004b000;

	/* Set BR in CR1 */
	spi->cr1 |= STM32_SPI_CR1_BR_DIV4R;

	/* Set CPOL and CPHA */
	/* Use default: 0, 0 */

	/* Set DFF to 8-bit */
	/* Use default: 8-bit */

	/* Configure LSBFIRST */
	/* Use default: MSB first */

	/* Set SSOE */
	/* Use default: software control */

	/* Enable TX and RX DMA */
	spi->cr2 |= STM32_SPI_CR2_TXDMAEN | STM32_SPI_CR2_RXDMAEN;

	/* Set SSM and SSI */
	spi->cr1 |= STM32_SPI_CR1_SSM | STM32_SPI_CR1_SSI;

	/* Enable CRC */
	spi->cr1 |= STM32_SPI_CR1_CRCEN;

	/* Set MSTR and SPE */
	spi->cr1 |= STM32_SPI_CR1_MSTR | STM32_SPI_CR1_SPE;

	/* Enable interrupt on PA0 (GPIO_SPI_NSS) */
	STM32_AFIO_EXTICR(0) &= ~0xF;
	STM32_EXTI_IMR |= (1 << 0);
	task_clear_pending_irq(STM32_IRQ_EXTI0);
	task_enable_irq(STM32_IRQ_EXTI0);
}

static int spi_master_read_write_byte(uint8_t *in_buf, uint8_t *out_buf, int sz)
{
	int ret;

	dma_start_rx(&dma_rx_option, sz, in_buf);
	dma_prepare_tx(&dma_tx_option, sz, out_buf);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));
	ret = dma_wait(STM32_DMAC_SPI1_TX);
	ret |= dma_wait(STM32_DMAC_SPI1_RX);

	dma_disable(STM32_DMAC_SPI1_TX);
	dma_disable(STM32_DMAC_SPI1_RX);
	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_clear_isr(STM32_DMAC_SPI1_RX);

	return ret;
}

int spi_master_send_command(struct spi_comm_packet *cmd)
{
	int ret;

	if (cmd->size + 3 > SPI_PACKET_MAX_SIZE)
		return EC_ERROR_OVERFLOW;

	/* Wait for SPI_NSS to go low */
	if (wait_for_signal(GPIO_A, 1 << 0, 0, 10 * MSEC))
		return EC_ERROR_TIMEOUT;

	/* Set CS1 (slave SPI_NSS) to low */
	STM32_GPIO_BSRR(GPIO_A) = 1 << (6 + 16);

	/* Wait for the slave to acknowledge */
	master_slave_sync(5);

	/* Clock out the packet size. */
	spi->dr = cmd->size;
	while (!(spi->sr & STM32_SPI_SR_RXNE))
		;
	ret = spi->dr;

	/* Wait for the slave to acknowledge */
	master_slave_sync(5);

	/* Clock out command. Don't care about input. */
	ret = spi_master_read_write_byte(in_msg, ((uint8_t *)cmd) + 1,
			cmd->size + SPI_PACKET_HEADER_SIZE - 1);

	return ret;
}

int spi_master_wait_response_async(void)
{
	wait_for_slave_ready(100 * MSEC);
	if (wait_for_signal(GPIO_A, 1 << 0, 1, 40 * MSEC))
		goto err_wait_resp_async;

	/* Discard potential garbage in SPI DR */
	if (spi->sr & STM32_SPI_SR_RXNE)
		in_msg[0] = spi->dr;

#ifdef CONFIG_KEYBORG_SPI_FULL_PACKET
	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_clear_isr(STM32_DMAC_SPI1_RX);
	dma_start_rx(&dma_rx_option, SPI_PACKET_MAX_SIZE, in_msg);
	dma_prepare_tx(&dma_tx_option, SPI_PACKET_MAX_SIZE, out_msg);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));
#else
	/* Get the packet size */
	spi->dr = DUMMY_DATA;
	while (!(spi->sr & STM32_SPI_SR_RXNE))
		;
	in_msg[0] = spi->dr;

	master_slave_sync(5);

	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_clear_isr(STM32_DMAC_SPI1_RX);

	/* Get the rest of the packet*/
	dma_start_rx(&dma_rx_option,
		     in_msg[0] + SPI_PACKET_HEADER_SIZE - 1,
		     in_msg + 1);
	dma_prepare_tx(&dma_tx_option,
		       in_msg[0] + SPI_PACKET_HEADER_SIZE - 1,
		       out_msg);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));
#endif

	return EC_SUCCESS;
err_wait_resp_async:
	/* Set CS1 (slave SPI_NSS) to high */
	STM32_GPIO_BSRR(GPIO_A) = 1 << 6;
	return EC_ERROR_TIMEOUT;
}

const struct spi_comm_packet *spi_master_wait_response_done(void)
{
	const struct spi_comm_packet *resp =
		(const struct spi_comm_packet *)in_msg;

	if (dma_wait(STM32_DMAC_SPI1_TX) || dma_wait(STM32_DMAC_SPI1_RX)) {
		debug_printf("SPI: Incomplete response\n");
		goto err_wait_response_done;
	}
	if (spi->sr & STM32_SPI_SR_CRCERR) {
		debug_printf("SPI: CRC mismatch\n");
		goto err_wait_response_done;
	}
	if (resp->cmd_sts != EC_SUCCESS) {
		debug_printf("SPI: Slave error\n");
		goto err_wait_response_done;
	}

exit_wait_response_done:
	dma_disable(STM32_DMAC_SPI1_TX);
	dma_disable(STM32_DMAC_SPI1_RX);
	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_clear_isr(STM32_DMAC_SPI1_RX);

	/* Set CS1 (slave SPI_NSS) to high */
	STM32_GPIO_BSRR(GPIO_A) = 1 << 6;

	return resp;
err_wait_response_done:
	resp = NULL;
	goto exit_wait_response_done;
}

const struct spi_comm_packet *spi_master_wait_response(void)
{
	if (spi_master_wait_response_async() != EC_SUCCESS)
		return NULL;
	return spi_master_wait_response_done();
}

static uint32_t myrnd(void)
{
	static uint32_t last = 0x1357;
	return last = (last * 8001 + 1);
}

int spi_hello_test(int iteration)
{
	int i, j, xv, sz;
	struct spi_comm_packet *cmd = (struct spi_comm_packet *)out_msg;
	const struct spi_comm_packet *resp;

	for (i = 0; i < iteration; ++i) {
		xv = myrnd() & 0xff;
		cmd->cmd_sts = TS_CMD_HELLO;
		sz = myrnd() % (sizeof(out_msg) - 10) + 1;
		cmd->size = sz + 2;
		cmd->data[0] = sz;
		cmd->data[1] = xv;
		for (j = 0; j < sz; ++j)
			cmd->data[j + 2] = myrnd() & 0xff;
		if (spi_master_send_command(cmd))
			return EC_ERROR_UNKNOWN;

		resp = spi_master_wait_response();
		if (resp == NULL || resp->size != sz)
			return EC_ERROR_UNKNOWN;
		for (j = 0; j < sz; ++j)
			if (cmd->data[j + 2] != resp->data[j])
				return EC_ERROR_UNKNOWN;
		resp = spi_master_wait_response();
		if (resp == NULL || resp->size != sz)
			return EC_ERROR_UNKNOWN;
		for (j = 0; j < sz; ++j)
			if ((cmd->data[j + 2] ^ xv) != resp->data[j])
				return EC_ERROR_UNKNOWN;
	}

	return EC_SUCCESS;
}

/*****************************************************************************/
/* Slave */

void spi_slave_init(void)
{
	/*
	 * MISO: AFIO Push-pull
	 */
	STM32_GPIO_CRL(GPIO_A) = (STM32_GPIO_CRL(GPIO_A) & 0xfff0ffff) |
				 0x000b0000;

	/* Set DFF to 8-bit (default) */

	/* Set CPOL and CPHA (default) */

	/* Configure LSBFIRST (default) */

	/* Set SSM and clear SSI */
	spi->cr1 |= STM32_SPI_CR1_SSM;
	spi->cr1 &= ~STM32_SPI_CR1_SSI;

	/* Enable RXNE interrupt */
	spi->cr2 |= STM32_SPI_CR2_RXNEIE;
	/*task_enable_irq(STM32_IRQ_SPI1);*/

	/* Enable TX and RX DMA */
	spi->cr2 |= STM32_SPI_CR2_TXDMAEN | STM32_SPI_CR2_RXDMAEN;

	/* Clear MSTR */
	spi->cr1 &= ~STM32_SPI_CR1_MSTR;

	/* Enable CRC */
	spi->cr1 |= STM32_SPI_CR1_CRCEN;

	/* Set SPE */
	spi->cr1 |= STM32_SPI_CR1_SPE;

	/* Dummy byte to clock out when the next packet comes in */
	spi->dr = DUMMY_DATA;

	/* Enable interrupt on PA0 (GPIO_SPI_NSS) */
	STM32_AFIO_EXTICR(0) &= ~0xF;
	STM32_EXTI_IMR |= (1 << 0);
	task_clear_pending_irq(STM32_IRQ_EXTI0);
	task_enable_irq(STM32_IRQ_EXTI0);
}

int spi_slave_send_response(struct spi_comm_packet *resp)
{
	int r;

	r = spi_slave_send_response_async(resp);
	r |= spi_slave_send_response_flush();

	return r;
}

int spi_slave_send_response_async(struct spi_comm_packet *resp)
{
	int size = resp->size + SPI_PACKET_HEADER_SIZE;

	if (size > SPI_PACKET_MAX_SIZE)
		return EC_ERROR_OVERFLOW;

	if (out_msg != (uint8_t *)resp)
		memcpy(out_msg, resp, size);

#ifdef CONFIG_KEYBORG_SPI_FULL_PACKET
	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_prepare_tx(&dma_tx_option, SPI_PACKET_MAX_SIZE, out_msg);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));

	/* Set N_CHG (master SPI_NSS) to high */
	STM32_GPIO_BSRR(GPIO_A) = 1 << 1;
#else
	if (spi->sr & STM32_SPI_SR_RXNE)
		in_msg[0] = spi->dr;
	spi->dr = out_msg[0];

	/* Set N_CHG (master SPI_NSS) to high */
	STM32_GPIO_BSRR(GPIO_A) = 1 << 1;

	while (!(spi->sr & STM32_SPI_SR_RXNE))
		;
	in_msg[0] = spi->dr;

	dma_clear_isr(STM32_DMAC_SPI1_TX);
	dma_prepare_tx(&dma_tx_option, size - 1, out_msg + 1);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));

	if (master_slave_sync(5) != EC_SUCCESS)
		return EC_ERROR_UNKNOWN;
#endif

	return EC_SUCCESS;
}

int spi_slave_send_response_flush(void)
{
	int ret;

	ret = dma_wait(STM32_DMAC_SPI1_TX);
	dma_disable(STM32_DMAC_SPI1_TX);
	dma_clear_isr(STM32_DMAC_SPI1_TX);

	/* Set N_CHG (master SPI_NSS) to low */
	STM32_GPIO_BSRR(GPIO_A) = 1 << (1 + 16);

	return ret;
}

static void spi_slave_nack(void)
{
	struct spi_comm_packet *resp = (struct spi_comm_packet *)out_msg;

	resp->cmd_sts = EC_ERROR_UNKNOWN;
	resp->size = 0;
	spi_slave_send_response(resp);
}

static void spi_slave_hello_back(const struct spi_comm_packet *cmd)
{
	struct spi_comm_packet *resp = (struct spi_comm_packet *)out_msg;
	uint8_t buf[SPI_PACKET_MAX_SIZE];
	int i, sz;

	sz = cmd->data[0];
	memcpy(buf, cmd->data, sz + 2);

	resp->cmd_sts = EC_SUCCESS;
	resp->size = sz;
	for (i = 0; i < sz; ++i)
		resp->data[i] = cmd->data[i + 2];
	spi_slave_send_response(resp);
	for (i = 0; i < sz; ++i)
		resp->data[i] = buf[i + 2] ^ buf[1];
	spi_slave_send_response(resp);
}

static void spi_nss_interrupt(void)
{
	const struct spi_comm_packet *cmd =
		(const struct spi_comm_packet *)in_msg;

	if (master_slave_is_master()) {
		slave_ready = 1;
		return;
	}

	if (spi->sr & STM32_SPI_SR_RXNE)
		in_msg[0] = spi->dr;

	/*
	 * SPI_NSS is also used for the master to reboot the slave.
	 * If SPI_NSS goes low without a sync in time, reboots.
	 */
	if (master_slave_sync(5))
		system_reboot();

	/* Read in the packet size */
	while (!(spi->sr & STM32_SPI_SR_RXNE))
		;
	in_msg[0] = spi->dr;

	/* Read in the rest of the packet */
	dma_clear_isr(STM32_DMAC_SPI1_RX);
	dma_start_rx(&dma_rx_option, in_msg[0] + SPI_PACKET_HEADER_SIZE - 1,
		     in_msg + 1);
	dma_prepare_tx(&dma_tx_option, in_msg[0] + SPI_PACKET_HEADER_SIZE - 1,
		       out_msg);
	dma_go(dma_get_channel(STM32_DMAC_SPI1_TX));

	master_slave_sync(5);

	if (dma_wait(STM32_DMAC_SPI1_RX) != EC_SUCCESS) {
		debug_printf("SPI: Incomplete packet\n");
		spi_slave_nack();
		return;
	}
	if (spi->sr & STM32_SPI_SR_CRCERR) {
		debug_printf("SPI: CRC mismatch\n");
		spi_slave_nack();
		return;
	}

	if (cmd->cmd_sts == TS_CMD_HELLO)
		spi_slave_hello_back(cmd);
	else if (cmd->cmd_sts == TS_CMD_FULL_SCAN)
		touch_scan_slave_start();
	else
		spi_slave_nack();
}

/* Interrupt handler for PA0 */
void IRQ_HANDLER(STM32_IRQ_EXTI0)(void)
{
	/* Clear the interrupt */
	STM32_EXTI_PR = STM32_EXTI_PR;

	/* SPI slave interrupt */
	spi_nss_interrupt();
}