summaryrefslogtreecommitdiff
path: root/board/twinkie/sniffer.c
blob: 00effb85394e0e34d6cb4d493b30c9289c7ece6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* Copyright 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "atomic.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "gpio.h"
#include "hwtimer.h"
#include "hooks.h"
#include "injector.h"
#include "link_defs.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "usb_descriptor.h"
#include "usb_hw.h"
#include "util.h"
#include "ina2xx.h"

/* Size of one USB packet buffer */
#define EP_BUF_SIZE 64

#define EP_PACKET_HEADER_SIZE 4
/* Size of the payload (packet minus the header) */
#define EP_PAYLOAD_SIZE (EP_BUF_SIZE - EP_PACKET_HEADER_SIZE)

/* Buffer enough to avoid overflowing due to USB latencies on both sides */
#define RX_COUNT (16 * EP_PAYLOAD_SIZE)

/* Task event for the USB transfer interrupt */
#define USB_EVENT TASK_EVENT_CUSTOM_BIT(0)

/* Bitmap of enabled capture channels : CC1+CC2 by default */
static uint8_t channel_mask = 0x3;

/* edge timing samples */
static uint8_t samples[2][RX_COUNT];
/* bitmap of the samples sub-buffer filled with DMA data */
static volatile uint32_t filled_dma;
/* timestamps of the beginning of DMA buffers */
static uint16_t sample_tstamp[4];
/* sequence number of the beginning of DMA buffers */
static uint16_t sample_seq[4];

/* Bulk endpoint double buffer */
static usb_uint ep_buf[2][EP_BUF_SIZE / 2] __usb_ram;
/* USB Buffers not used, ready to be filled */
static volatile uint32_t free_usb = 3;

static inline void led_set_activity(int ch)
{
	static int accumul[2];
	static uint32_t last_ts[2];
	uint32_t now = __hw_clock_source_read();
	int delta = now - last_ts[ch];
	last_ts[ch] = now;
	accumul[ch] = MAX(0, accumul[ch] + (30000 - delta));
	gpio_set_level(ch ? GPIO_LED_R_L : GPIO_LED_G_L, !accumul[ch]);
}

static inline void led_set_record(void)
{
	gpio_set_level(GPIO_LED_B_L, 0);
}

static inline void led_reset_record(void)
{
	gpio_set_level(GPIO_LED_B_L, 1);
}

/* USB descriptors */
const struct usb_interface_descriptor USB_IFACE_DESC(USB_IFACE_VENDOR) = {
	.bLength = USB_DT_INTERFACE_SIZE,
	.bDescriptorType = USB_DT_INTERFACE,
	.bInterfaceNumber = USB_IFACE_VENDOR,
	.bAlternateSetting = 0,
	.bNumEndpoints = 1,
	.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
	.bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,
	.bInterfaceProtocol = 0,
	.iInterface = USB_STR_SNIFFER,
};
const struct usb_endpoint_descriptor USB_EP_DESC(USB_IFACE_VENDOR,
						 USB_EP_SNIFFER) = {
	.bLength = USB_DT_ENDPOINT_SIZE,
	.bDescriptorType = USB_DT_ENDPOINT,
	.bEndpointAddress = 0x80 | USB_EP_SNIFFER,
	.bmAttributes = 0x02 /* Bulk IN */,
	.wMaxPacketSize = USB_MAX_PACKET_SIZE,
	.bInterval = 1
};

/* USB callbacks */
static void ep_tx(void)
{
	static int b; /* current buffer index */
	if (btable_ep[USB_EP_SNIFFER].tx_count) {
		/* we have transmitted the previous buffer, toggle it */
		free_usb |= 1 << b;
		b = b ? 0 : 1;
		btable_ep[USB_EP_SNIFFER].tx_addr = usb_sram_addr(ep_buf[b]);
	}
	/* re-enable data transmission if we have available data */
	btable_ep[USB_EP_SNIFFER].tx_count = (free_usb & (1<<b)) ? 0
								 : EP_BUF_SIZE;
	STM32_TOGGLE_EP(USB_EP_SNIFFER, EP_TX_MASK, EP_TX_VALID, 0);
	/* wake up the processing */
	task_set_event(TASK_ID_SNIFFER, USB_EVENT);
}

static void ep_event(enum usb_ep_event evt)
{
	if (evt != USB_EVENT_RESET)
		return;

	/* Bulk IN endpoint */
	btable_ep[USB_EP_SNIFFER].tx_addr = usb_sram_addr(ep_buf[0]);
	btable_ep[USB_EP_SNIFFER].tx_count = EP_BUF_SIZE;
	STM32_USB_EP(USB_EP_SNIFFER) = (USB_EP_SNIFFER << 0) /*Endpoint Num*/ |
				       (3 << 4) /* TX Valid */ |
				       (0 << 9) /* Bulk EP */ |
				       (0 << 12) /* RX Disabled */;
}
USB_DECLARE_EP(USB_EP_SNIFFER, ep_tx, ep_tx, ep_event);


/* --- RX operation using comparator linked to timer --- */
/* RX on CC1 is using COMP1 triggering TIM1 CH1 */
#define TIM_RX1 1
#define DMAC_TIM_RX1 STM32_DMAC_CH6
#define TIM_RX1_CCR_IDX 1
/* RX on CC1 is using COMP2 triggering TIM2 CH4 */
#define TIM_RX2 2
#define DMAC_TIM_RX2 STM32_DMAC_CH7
#define TIM_RX2_CCR_IDX 4

/* Clock divider for RX edges timings (2.4Mhz counter from 48Mhz clock) */
#define RX_CLOCK_DIV (20 - 1)

static const struct dma_option dma_tim_cc1 = {
	DMAC_TIM_RX1, (void *)&STM32_TIM_CCRx(TIM_RX1, TIM_RX1_CCR_IDX),
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT |
	STM32_DMA_CCR_CIRC | STM32_DMA_CCR_TCIE | STM32_DMA_CCR_HTIE
};

static const struct dma_option dma_tim_cc2 = {
	DMAC_TIM_RX2, (void *)&STM32_TIM_CCRx(TIM_RX2, TIM_RX2_CCR_IDX),
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT |
	STM32_DMA_CCR_CIRC | STM32_DMA_CCR_TCIE | STM32_DMA_CCR_HTIE
};

/* sequence number for sample buffers */
static volatile uint32_t seq;
/* Buffer overflow count */
static uint32_t oflow;

#define SNIFFER_CHANNEL_CC1 0
#define SNIFFER_CHANNEL_CC2 1

#define get_channel(b)   (((b) >> 12) & 0x1)

void tim_rx1_handler(uint32_t stat)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	int idx = !(stat & STM32_DMA_ISR_HTIF(DMAC_TIM_RX1));
	uint32_t mask = idx ? 0xFF00 : 0x00FF;
	uint32_t next = idx ? 0x0001 : 0x0100;

	sample_tstamp[idx] = __hw_clock_source_read();
	sample_seq[idx] = ((seq++ << 3) & 0x0ff8) |
			(SNIFFER_CHANNEL_CC1<<12);
	if (filled_dma & next) {
		oflow++;
		sample_seq[idx] |= 0x8000;
	} else {
		led_set_record();
	}
	filled_dma |= mask;
	dma->ifcr = STM32_DMA_ISR_ALL(DMAC_TIM_RX1);
	led_set_activity(0);
}

void tim_rx2_handler(uint32_t stat)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	int idx = !(stat & STM32_DMA_ISR_HTIF(DMAC_TIM_RX2));
	uint32_t mask = idx ? 0xFF000000 : 0x00FF0000;
	uint32_t next = idx ? 0x00010000 : 0x01000000;

	idx += 2;
	sample_tstamp[idx] = __hw_clock_source_read();
	sample_seq[idx] = ((seq++ << 3) & 0x0ff8) |
			(SNIFFER_CHANNEL_CC2<<12);
	if (filled_dma & next) {
		oflow++;
		sample_seq[idx] |= 0x8000;
	} else {
		led_set_record();
	}
	filled_dma |= mask;
	dma->ifcr = STM32_DMA_ISR_ALL(DMAC_TIM_RX2);
	led_set_activity(1);
}

void tim_dma_handler(void)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	uint32_t stat = dma->isr & (STM32_DMA_ISR_HTIF(DMAC_TIM_RX1)
				  | STM32_DMA_ISR_TCIF(DMAC_TIM_RX1)
				  | STM32_DMA_ISR_HTIF(DMAC_TIM_RX2)
				  | STM32_DMA_ISR_TCIF(DMAC_TIM_RX2));
	if (stat & STM32_DMA_ISR_ALL(DMAC_TIM_RX2))
		tim_rx2_handler(stat);
	else
		tim_rx1_handler(stat);
	/* time to process the samples */
	task_set_event(TASK_ID_SNIFFER, USB_EVENT);
}
DECLARE_IRQ(STM32_IRQ_DMA_CHANNEL_4_7, tim_dma_handler, 1);

static void rx_timer_init(int tim_id, timer_ctlr_t *tim, int ch_idx, int up_idx)
{
	int bit_idx = 8 * ((ch_idx - 1) % 2);
	/* --- set counter for RX timing : 2.4Mhz rate, free-running --- */
	__hw_timer_enable_clock(tim_id, 1);
	/* Timer configuration */
	tim->cr1 = 0x0004;
	tim->cr2 = 0x0000;
	/* Auto-reload value : 8-bit free running counter */
	tim->arr = 0xFF;
	/* Counter reloading event after 106us */
	tim->ccr[1] = 0xFF;
	/* Timer ICx input configuration */
	if (ch_idx <= 2)
		tim->ccmr1 = 1 << bit_idx;
	else
		tim->ccmr2 = 1 << bit_idx;
	tim->ccer = 0xB << ((ch_idx - 1) * 4);
	/* TODO: add input filtering */
	/* configure DMA request on CCRx update and overflow/update event */
	tim->dier = (1 << (8 + ch_idx)) | (1 << (8 + up_idx));
	/* set prescaler to /26 (F=2.4Mhz, T=0.4us) */
	tim->psc = RX_CLOCK_DIV;
	/* Reload the pre-scaler and reset the counter, clear CCRx */
	tim->egr = 0x001F;
	/* clear update event from reloading */
	tim->sr = 0;
}



void sniffer_init(void)
{
	/* remap TIM1 CH1/2/3 to DMA channel 6 */
	STM32_SYSCFG_CFGR1 |= BIT(28);

	/* TIM1 CH1 for CC1 RX */
	rx_timer_init(TIM_RX1, (void *)STM32_TIM_BASE(TIM_RX1),
		      TIM_RX1_CCR_IDX, 2);
	/* TIM3 CH4 for CC2 RX */
	rx_timer_init(TIM_RX2, (void *)STM32_TIM_BASE(TIM_RX2),
		      TIM_RX2_CCR_IDX, 2);

	/* turn on COMP/SYSCFG */
	STM32_RCC_APB2ENR |= BIT(0);
	STM32_COMP_CSR = STM32_COMP_CMP1EN | STM32_COMP_CMP1MODE_HSPEED |
			 STM32_COMP_CMP1INSEL_VREF12 |
			 STM32_COMP_CMP1OUTSEL_TIM1_IC1 |
			 STM32_COMP_CMP1HYST_HI |
			 STM32_COMP_CMP2EN | STM32_COMP_CMP2MODE_HSPEED |
			 STM32_COMP_CMP2INSEL_VREF12 |
			 STM32_COMP_CMP2OUTSEL_TIM2_IC4 |
			 STM32_COMP_CMP2HYST_HI;

	/* start sampling the edges on the CC lines using the RX timers */
	dma_start_rx(&dma_tim_cc1, RX_COUNT, samples[0]);
	dma_start_rx(&dma_tim_cc2, RX_COUNT, samples[1]);
	task_enable_irq(STM32_IRQ_DMA_CHANNEL_4_7);
	/* start RX timers on CC1 and CC2 */
	STM32_TIM_CR1(TIM_RX1) |= 1;
	STM32_TIM_CR1(TIM_RX2) |= 1;
}
DECLARE_HOOK(HOOK_INIT, sniffer_init, HOOK_PRIO_DEFAULT);

/* state of the simple text tracer */
extern int trace_mode;

/* Task to post-process the samples and copy them the USB endpoint buffer */
void sniffer_task(void)
{
	int u = 0; /* current USB buffer index */
	int d = 0; /* current DMA buffer index */
	int off = 0; /* DMA buffer offset */

	while (1) {
		/* Wait for a new buffer of samples or a new USB free buffer */
		task_wait_event(-1);
		/* send the available samples over USB if we have a buffer*/
		while (filled_dma && free_usb) {
			while (!(filled_dma & BIT(d))) {
				d = (d + 1) & 31;
				off += EP_PAYLOAD_SIZE;
				if (off >= RX_COUNT)
					off = 0;
			}

			ep_buf[u][0] = sample_seq[d >> 3] | (d & 7);
			ep_buf[u][1] = sample_tstamp[d >> 3];

			memcpy_to_usbram(
					((void *)usb_sram_addr(ep_buf[u]
						+ (EP_PACKET_HEADER_SIZE>>1))),
					samples[d >> 4]+off,
					EP_PAYLOAD_SIZE);
			atomic_clear_bits((uint32_t *)&free_usb, 1 << u);
			u = !u;
			atomic_clear_bits((uint32_t *)&filled_dma, 1 << d);
		}
		led_reset_record();

		if (trace_mode != TRACE_MODE_OFF) {
			uint8_t curr = recording_enable(0);
			trace_packets();
			recording_enable(curr);
		}
	}
}

int wait_packet(int pol, uint32_t min_edges, uint32_t timeout_us)
{
	stm32_dma_chan_t *chan = dma_get_channel(pol ? DMAC_TIM_RX2
						     : DMAC_TIM_RX1);
	uint32_t t0 = __hw_clock_source_read();
	uint32_t c0 = chan->cndtr;
	uint32_t t_gap = t0;
	uint32_t c_gap = c0;
	uint32_t total_edges = 0;

	while (1) {
		uint32_t t = __hw_clock_source_read();
		uint32_t c = chan->cndtr;
		if (t - t0 > timeout_us) /* Timeout */
			break;
		if (min_edges) { /* real packet detection */
			int nb = (int)c_gap - (int)c;
			if (nb < 0)
				nb = RX_COUNT - nb;
			if (nb > 3) { /* NOT IDLE */
				t_gap = t;
				c_gap = c;
				total_edges += nb;
			} else {
				if ((t - t_gap) > 20 &&
				    (total_edges - (t - t0)/256) >= min_edges)
					/* real gap after the packet */
					break;
			}
		}
	}
	return (__hw_clock_source_read() - t0 > timeout_us);
}

uint8_t recording_enable(uint8_t new_mask)
{
	uint8_t old_mask = channel_mask;
	uint8_t diff = channel_mask ^ new_mask;
	/* start/stop RX timers according to the channel mask */
	if (diff & 1) {
		if (new_mask & 1)
			STM32_TIM_CR1(TIM_RX1) |= 1;
		else
			STM32_TIM_CR1(TIM_RX1) &= ~1;
	}
	if (diff & 2) {
		if (new_mask & 2)
			STM32_TIM_CR1(TIM_RX2) |= 1;
		else
			STM32_TIM_CR1(TIM_RX2) &= ~1;
	}
	channel_mask = new_mask;
	return old_mask;
}

static void sniffer_sysjump(void)
{
	/* Stop DMA before jumping to avoid memory corruption */
	recording_enable(0);
}
DECLARE_HOOK(HOOK_SYSJUMP, sniffer_sysjump, HOOK_PRIO_DEFAULT);

static int command_sniffer(int argc, char **argv)
{
	ccprintf("Seq number:%d Overflows: %d\n", seq, oflow);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(sniffer, command_sniffer,
			"[]", "Buffering status");