summaryrefslogtreecommitdiff
path: root/board/twinkie/sniffer.c
blob: a4e4f6f16e1cba4b030c2f7555bb1116c04e36ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "atomic.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "gpio.h"
#include "hwtimer.h"
#include "hooks.h"
#include "link_defs.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "usb.h"
#include "util.h"

/* Size of one USB packet buffer */
#define EP_BUF_SIZE 64
/* Size of the payload (packet minus the header) */
#define EP_PAYLOAD_SIZE (EP_BUF_SIZE - 4)

/* Buffer enough to avoid overflowing due to USB latencies on both sides */
#define RX_COUNT (16 * EP_PAYLOAD_SIZE)

/* Task event for the USB transfer interrupt */
#define USB_EVENTS TASK_EVENT_CUSTOM(3)

/* edge timing samples */
static uint8_t samples[2][RX_COUNT];
/* bitmap of the samples sub-buffer filled with DMA data */
static volatile uint32_t filled_dma;
/* timestamps of the beginning of DMA buffers */
static uint16_t sample_tstamp[4];
/* sequence number of the beginning of DMA buffers */
static uint16_t sample_seq[4];

/* Bulk endpoint double buffer */
static usb_uint ep_buf[2][EP_BUF_SIZE / 2] __usb_ram;
/* USB Buffers not used, ready to be filled */
static volatile uint32_t free_usb = 3;

/* USB descriptors */
const struct usb_interface_descriptor USB_IFACE_DESC(USB_IFACE_VENDOR) = {
	.bLength = USB_DT_INTERFACE_SIZE,
	.bDescriptorType = USB_DT_INTERFACE,
	.bInterfaceNumber = USB_IFACE_VENDOR,
	.bAlternateSetting = 0,
	.bNumEndpoints = 1,
	.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
	.bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,
	.bInterfaceProtocol = 0,
	.iInterface = USB_STR_SNIFFER,
};
const struct usb_endpoint_descriptor USB_EP_DESC(USB_IFACE_VENDOR,
						 USB_EP_SNIFFER) = {
	.bLength = USB_DT_ENDPOINT_SIZE,
	.bDescriptorType = USB_DT_ENDPOINT,
	.bEndpointAddress = 0x80 | USB_EP_SNIFFER,
	.bmAttributes = 0x02 /* Bulk IN */,
	.wMaxPacketSize = USB_MAX_PACKET_SIZE,
	.bInterval = 1
};

/* USB callbacks */
static void ep_tx(void)
{
	static int b; /* current buffer index */
	if (btable_ep[USB_EP_SNIFFER].tx_count) {
		/* we have transmitted the previous buffer, toggle it */
		free_usb |= 1 << b;
		b = b ? 0 : 1;
		btable_ep[USB_EP_SNIFFER].tx_addr = usb_sram_addr(ep_buf[b]);
	}
	/* re-enable data transmission if we have available data */
	btable_ep[USB_EP_SNIFFER].tx_count = (free_usb & (1<<b)) ? 0
								 : EP_BUF_SIZE;
	STM32_TOGGLE_EP(USB_EP_SNIFFER, EP_TX_MASK, EP_TX_VALID, 0);
	/* wake up the processing */
	task_set_event(TASK_ID_SNIFFER, 1 << b, 0);
}

static void ep_reset(void)
{
	/* Bulk IN endpoint */
	btable_ep[USB_EP_SNIFFER].tx_addr = usb_sram_addr(ep_buf[0]);
	btable_ep[USB_EP_SNIFFER].tx_count = EP_BUF_SIZE;
	STM32_USB_EP(USB_EP_SNIFFER) = (USB_EP_SNIFFER << 0) /*Endpoint Num*/ |
				       (3 << 4) /* TX Valid */ |
				       (0 << 9) /* Bulk EP */ |
				       (0 << 12) /* RX Disabled */;
}
USB_DECLARE_EP(USB_EP_SNIFFER, ep_tx, ep_tx, ep_reset);


/* --- RX operation using comparator linked to timer --- */
/* RX on CC1 is using COMP1 triggering TIM1 CH1 */
#define TIM_RX1 1
#define DMAC_TIM_RX1 STM32_DMAC_CH6
#define TIM_RX1_CCR_IDX 1
/* RX on CC1 is using COMP2 triggering TIM2 CH4 */
#define TIM_RX2 2
#define DMAC_TIM_RX2 STM32_DMAC_CH7
#define TIM_RX2_CCR_IDX 4

/* Clock divider for RX edges timings (2.4Mhz counter from 48Mhz clock) */
#define RX_CLOCK_DIV (20 - 1)

static const struct dma_option dma_tim_cc1 = {
	DMAC_TIM_RX1, (void *)&STM32_TIM_CCRx(TIM_RX1, TIM_RX1_CCR_IDX),
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT |
	STM32_DMA_CCR_CIRC | STM32_DMA_CCR_TCIE | STM32_DMA_CCR_HTIE
};

static const struct dma_option dma_tim_cc2 = {
	DMAC_TIM_RX2, (void *)&STM32_TIM_CCRx(TIM_RX2, TIM_RX2_CCR_IDX),
	STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT |
	STM32_DMA_CCR_CIRC | STM32_DMA_CCR_TCIE | STM32_DMA_CCR_HTIE
};

/* sequence number for sample buffers */
static volatile uint32_t seq;
/* Buffer overflow count */
static uint32_t oflow;

void tim_rx1_handler(uint32_t stat)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	int idx = !(stat & STM32_DMA_ISR_HTIF(DMAC_TIM_RX1));
	uint32_t mask = idx ? 0xFF00 : 0x00FF;
	uint32_t next = idx ? 0x0001 : 0x0100;

	sample_tstamp[idx] = __hw_clock_source_read();
	sample_seq[idx] = ((seq++ << 3) & 0x0ff8) | (0<<12) /* CC1 */;
	if (filled_dma & next) {
		oflow++;
		sample_seq[idx] |= 0x8000;
	}
	filled_dma |= mask;
	dma->ifcr = STM32_DMA_ISR_ALL(DMAC_TIM_RX1);
}

void tim_rx2_handler(uint32_t stat)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	int idx = !(stat & STM32_DMA_ISR_HTIF(DMAC_TIM_RX2));
	uint32_t mask = idx ? 0xFF000000 : 0x00FF0000;
	uint32_t next = idx ? 0x00010000 : 0x01000000;

	idx += 2;
	sample_tstamp[idx] = __hw_clock_source_read();
	sample_seq[idx] = ((seq++ << 3) & 0x0ff8) | (1<<12) /* CC2 */;
	if (filled_dma & next) {
		oflow++;
		sample_seq[idx] |= 0x8000;
	}
	filled_dma |= mask;
	dma->ifcr = STM32_DMA_ISR_ALL(DMAC_TIM_RX2);
}

void tim_dma_handler(void)
{
	stm32_dma_regs_t *dma = STM32_DMA1_REGS;
	uint32_t stat = dma->isr & (STM32_DMA_ISR_HTIF(DMAC_TIM_RX1)
				  | STM32_DMA_ISR_TCIF(DMAC_TIM_RX1)
				  | STM32_DMA_ISR_HTIF(DMAC_TIM_RX2)
				  | STM32_DMA_ISR_TCIF(DMAC_TIM_RX2));
	if (stat & STM32_DMA_ISR_ALL(DMAC_TIM_RX2))
		tim_rx2_handler(stat);
	else
		tim_rx1_handler(stat);
	/* time to process the samples */
	task_set_event(TASK_ID_SNIFFER, TASK_EVENT_CUSTOM(stat), 0);
}
DECLARE_IRQ(STM32_IRQ_DMA_CHANNEL_4_7, tim_dma_handler, 1);

static void rx_timer_init(int tim_id, timer_ctlr_t *tim, int ch_idx, int up_idx)
{
	int bit_idx = 8 * ((ch_idx - 1) % 2);
	/* --- set counter for RX timing : 2.4Mhz rate, free-running --- */
	__hw_timer_enable_clock(tim_id, 1);
	/* Timer configuration */
	tim->cr1 = 0x0004;
	tim->cr2 = 0x0000;
	/* Auto-reload value : 8-bit free running counter */
	tim->arr = 0xFF;
	/* Counter reloading event after 106us */
	tim->ccr[1] = 0xFF;
	/* Timer ICx input configuration */
	if (ch_idx <= 2)
		tim->ccmr1 = 1 << bit_idx;
	else
		tim->ccmr2 = 1 << bit_idx;
	tim->ccer = 0xB << ((ch_idx - 1) * 4);
	/* TODO: add input filtering */
	/* configure DMA request on CCRx update and overflow/update event */
	tim->dier = (1 << (8 + ch_idx)) | (1 << (8 + up_idx));
	/* set prescaler to /26 (F=2.4Mhz, T=0.4us) */
	tim->psc = RX_CLOCK_DIV;
	/* Reload the pre-scaler and reset the counter, clear CCRx */
	tim->egr = 0x001F;
	/* clear update event from reloading */
	tim->sr = 0;
}

static void sniffer_init(void)
{
	/* remap TIM1 CH1/2/3 to DMA channel 6 */
	STM32_SYSCFG_CFGR1 |= 1 << 28;

	/* TIM1 CH1 for CC1 RX */
	rx_timer_init(TIM_RX1, (void *)STM32_TIM_BASE(TIM_RX1),
		      TIM_RX1_CCR_IDX, 2);
	/* TIM3 CH4 for CC2 RX */
	rx_timer_init(TIM_RX2, (void *)STM32_TIM_BASE(TIM_RX2),
		      TIM_RX2_CCR_IDX, 2);

	/* turn on COMP/SYSCFG */
	STM32_RCC_APB2ENR |= 1 << 0;
	STM32_COMP_CSR = STM32_COMP_CMP1EN | STM32_COMP_CMP1MODE_HSPEED |
			 STM32_COMP_CMP1INSEL_VREF12 |
			 STM32_COMP_CMP1OUTSEL_TIM1_IC1 |
			 STM32_COMP_CMP1HYST_HI |
			 STM32_COMP_CMP2EN | STM32_COMP_CMP2MODE_HSPEED |
			 STM32_COMP_CMP2INSEL_VREF12 |
			 STM32_COMP_CMP2OUTSEL_TIM2_IC4 |
			 STM32_COMP_CMP2HYST_HI;
	ccprintf("Sniffer initialized\n");


	/* start sampling the edges on the CC lines using the RX timers */
	dma_start_rx(&dma_tim_cc1, RX_COUNT, samples[0]);
	dma_start_rx(&dma_tim_cc2, RX_COUNT, samples[1]);
	task_enable_irq(STM32_IRQ_DMA_CHANNEL_4_7);
	/* start RX timers on CC1 and CC2 */
	STM32_TIM_CR1(TIM_RX1) |= 1;
	STM32_TIM_CR1(TIM_RX2) |= 1;
}
DECLARE_HOOK(HOOK_INIT, sniffer_init, HOOK_PRIO_DEFAULT);

/* Task to post-process the samples and copy them the USB endpoint buffer */
void sniffer_task(void)
{
	int u = 0; /* current USB buffer index */
	int d = 0; /* current DMA buffer index */
	int off = 0; /* DMA buffer offset */

	while (1) {
		/* Wait for a new buffer of samples or a new USB free buffer */
		task_wait_event(-1);

		/* send the available samples over USB if we have a buffer*/
		while (filled_dma && free_usb) {
			while (!(filled_dma & (1 << d))) {
				d = (d + 1) & 31;
				off += EP_PAYLOAD_SIZE;
				if (off >= RX_COUNT)
					off = 0;
			}
			ep_buf[u][0] = sample_seq[d >> 3] | (d & 7);
			ep_buf[u][1] = sample_tstamp[d >> 3];
			memcpy_usbram(ep_buf[u] + 2,
				      samples[d >> 4]+off, EP_PAYLOAD_SIZE);
			atomic_clear((uint32_t *)&free_usb, 1 << u);
			u = !u;
			atomic_clear((uint32_t *)&filled_dma, 1 << d);
		}
	}
}

static int command_sniffer(int argc, char **argv)
{
	ccprintf("Seq number:%d Overflows: %d\n", seq, oflow);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(sniffer, command_sniffer,
			"[]", "Buffering status", NULL);