summaryrefslogtreecommitdiff
path: root/board/zinger/usb_pd_policy.c
blob: e4aa2d1f983ca6d24c66fd56a32617d5da92bae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "adc.h"
#include "common.h"
#include "console.h"
#include "debug.h"
#include "hooks.h"
#include "registers.h"
#include "sha1.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "usb_pd.h"
#include "version.h"

/* ------------------------- Power supply control ------------------------ */

/* GPIO level setting helpers through BSRR register */
#define GPIO_SET(n)   (1 << (n))
#define GPIO_RESET(n) (1 << ((n) + 16))

/* Output voltage selection */
enum volt {
	VO_5V  = GPIO_RESET(13) | GPIO_RESET(14),
	VO_12V = GPIO_SET(13)   | GPIO_RESET(14),
	VO_13V = GPIO_RESET(13) | GPIO_SET(14),
	VO_20V = GPIO_SET(13)   | GPIO_SET(14),
};

static inline void set_output_voltage(enum volt v)
{
	/* set voltage_select on PA13/PA14 */
	STM32_GPIO_BSRR(GPIO_A) = v;
}

static inline void output_enable(void)
{
	/* GPF0 (enable OR'ing FETs) = 1 */
	STM32_GPIO_BSRR(GPIO_F) = GPIO_SET(0);
}

static inline void output_disable(void)
{
	/* GPF0 (disable OR'ing FETs) = 0 */
	STM32_GPIO_BSRR(GPIO_F) = GPIO_RESET(0);
}

static inline int output_is_enabled(void)
{
	/* GPF0 = enable output FET */
	return STM32_GPIO_IDR(GPIO_F) & 1;
}

/* ----- fault conditions ----- */

enum faults {
	FAULT_OK = 0,
	FAULT_OCP, /* Over-Current Protection */
	FAULT_FAST_OCP, /* Over-Current Protection for interrupt context */
	FAULT_OVP, /* Under or Over-Voltage Protection */
};

/* current fault condition */
static enum faults fault;
/* expiration date of the last fault condition */
static timestamp_t fault_deadline;

/* ADC in 12-bit mode */
#define ADC_SCALE (1 << 12)
/* ADC power supply : VDDA = 3.3V */
#define VDDA_MV   3300
/* Current sense resistor : 5 milliOhm */
#define R_SENSE   5
/* VBUS voltage is measured through 10k / 100k voltage divider = /11 */
#define VOLT_DIV  ((10+100)/10)
/* The current sensing op-amp has a x100 gain */
#define CURR_GAIN 100
/* convert VBUS voltage in raw ADC value */
#define VBUS_MV(mv) ((mv)*ADC_SCALE/VOLT_DIV/VDDA_MV)
/* convert VBUS current in raw ADC value */
#define VBUS_MA(ma) ((ma)*ADC_SCALE*R_SENSE/1000*CURR_GAIN/VDDA_MV)
/* convert raw ADC value to mA */
#define ADC_TO_CURR_MA(vbus) ((vbus)*1000/(ADC_SCALE*R_SENSE)*VDDA_MV/CURR_GAIN)

/* Max current : 20% over 3A = 3.6A */
#define MAX_CURRENT VBUS_MA(3600)
/* Fast short circuit protection : 4.5A */
#define MAX_CURRENT_FAST VBUS_MA(4500)
/* reset over-current after 1 second */
#define OCP_TIMEOUT SECOND

/* Under-voltage limit is 0.8x Vnom */
#define UVP_MV(mv)  VBUS_MV((mv) * 8 / 10)
/* Over-voltage limit is 1.2x Vnom */
#define OVP_MV(mv)  VBUS_MV((mv) * 12 / 10)
/* Over-voltage recovery threshold is 1.1x Vnom */
#define OVP_REC_MV(mv)  VBUS_MV((mv) * 11 / 10)

/* Time to allow for voltage down stepping */
/* TODO reduce this time if possible when voltage discharging is implemented */
#define VOLTAGE_DOWN_STEP_TIME (500*MSEC)

/* ----------------------- USB Power delivery policy ---------------------- */

/* Power Delivery Objects */
const uint32_t pd_src_pdo[] = {
		PDO_FIXED(5000,   500, PDO_FIXED_EXTERNAL),
		PDO_FIXED(5000,  3000, 0),
		PDO_FIXED(12000, 3000, 0),
		PDO_FIXED(20000, 3000, 0),
};
const int pd_src_pdo_cnt = ARRAY_SIZE(pd_src_pdo);

/* PDO voltages (should match the table above) */
static const struct {
	enum volt select; /* GPIO configuration to select the voltage */
	int       uvp;    /* under-voltage limit in mV */
	int       ovp;    /* over-voltage limit in mV */
	int       ovp_rec;/* over-voltage recovery threshold in mV */
} voltages[ARRAY_SIZE(pd_src_pdo)] = {
	{VO_5V,  UVP_MV(5000),  OVP_MV(5000), OVP_REC_MV(5000)},
	{VO_5V,  UVP_MV(5000),  OVP_MV(5000), OVP_REC_MV(5000)},
	{VO_12V, UVP_MV(12000), OVP_MV(12000), OVP_REC_MV(12000)},
	{VO_20V, UVP_MV(20000), OVP_MV(20000), OVP_REC_MV(20000)},
};

/* current and previous selected PDO entry */
static int volt_idx;
static int last_volt_idx;

/* flag and timestamp for down-stepping the voltage */
static int down_step;
static uint64_t down_step_done_time;

/* output current measurement */
int vbus_amp;

int pd_request_voltage(uint32_t rdo)
{
	int op_ma = rdo & 0x3FF;
	int max_ma = (rdo >> 10) & 0x3FF;
	int idx = rdo >> 28;
	uint32_t pdo;
	uint32_t pdo_ma;


	/* fault condition not cleared : reject transitions */
	if (fault != FAULT_OK)
		return EC_ERROR_INVAL;

	if (!idx || idx > pd_src_pdo_cnt)
		return EC_ERROR_INVAL; /* Invalid index */

	/* check current ... */
	pdo = pd_src_pdo[idx - 1];
	pdo_ma = (pdo & 0x3ff);
	if (op_ma > pdo_ma)
		return EC_ERROR_INVAL; /* too much op current */
	if (max_ma > pdo_ma)
		return EC_ERROR_INVAL; /* too much max current */

	debug_printf("Switch to %d V %d mA (for %d/%d mA)\n",
		     ((pdo >> 10) & 0x3ff) * 50, (pdo & 0x3ff) * 10,
		     ((rdo >> 10) & 0x3ff) * 10, (rdo & 0x3ff) * 10);

	if (idx - 1 < volt_idx) { /* down voltage transition */
		down_step = 1;
		down_step_done_time = get_time().val + VOLTAGE_DOWN_STEP_TIME;
		/* TODO discharge on down voltage transitions ? */
	}
	last_volt_idx = volt_idx;
	volt_idx = idx - 1;
	set_output_voltage(voltages[volt_idx].select);

	return EC_SUCCESS;
}

int pd_set_power_supply_ready(int port)
{
	/* fault condition not cleared : do not turn on power */
	if (fault != FAULT_OK)
		return EC_ERROR_INVAL;

	output_enable();
	/* Over-current monitoring */
	adc_enable_watchdog(ADC_CH_A_SENSE, MAX_CURRENT_FAST, 0);

	return EC_SUCCESS; /* we are ready */
}

void pd_power_supply_reset(int port)
{
	output_disable();
	/* TODO discharge ? */
	volt_idx = 0;
	set_output_voltage(VO_5V);
	/* TODO transition delay */

	/* Stop OCP monitoring to save power */
	adc_disable_watchdog();
}

int pd_board_checks(void)
{
	int vbus_volt;
	int ovp_idx;

	/* Reload the watchdog */
	STM32_IWDG_KR = STM32_IWDG_KR_RELOAD;

	vbus_volt = adc_read_channel(ADC_CH_V_SENSE);
	vbus_amp = adc_read_channel(ADC_CH_A_SENSE);

	if (fault == FAULT_FAST_OCP) {
		debug_printf("Fast OverCurrent\n");
		fault = FAULT_OCP;
		/* reset over-current after 1 second */
		fault_deadline.val = get_time().val + OCP_TIMEOUT;
		return EC_ERROR_INVAL;
	}

	if (vbus_amp > MAX_CURRENT) {
		/* 3 more samples to check whether this is just a transient */
		int count;
		for (count = 0; count < 3; count++)
			if (adc_read_channel(ADC_CH_A_SENSE) < MAX_CURRENT)
				break;
		/* trigger the slow OCP iff all 4 samples are above the max */
		if (count == 3) {
			debug_printf("OverCurrent : %d mA\n",
			  vbus_amp * VDDA_MV / CURR_GAIN * 1000
				   / R_SENSE / ADC_SCALE);
			fault = FAULT_OCP;
			/* reset over-current after 1 second */
			fault_deadline.val = get_time().val + OCP_TIMEOUT;
			return EC_ERROR_INVAL;
		}
	}

	/*
	 * Set the voltage index to use for checking OVP. During a down step
	 * transition, use the previous voltage index to check for OVP.
	 */
	if (down_step && get_time().val >= down_step_done_time)
		down_step = 0;
	ovp_idx = down_step ? last_volt_idx : volt_idx;

	if ((output_is_enabled() && (vbus_volt > voltages[ovp_idx].ovp)) ||
	    (fault && (vbus_volt > voltages[ovp_idx].ovp_rec))) {
		if (!fault)
			debug_printf("OverVoltage : %d mV\n",
				vbus_volt * VDDA_MV * VOLT_DIV / ADC_SCALE);
		/* TODO(crosbug.com/p/28331) discharge */
		fault = FAULT_OVP;
		/* no timeout */
		fault_deadline.val = get_time().val;
		return EC_ERROR_INVAL;
	}

	/* everything is good *and* the error condition has expired */
	if ((fault != FAULT_OK) && (get_time().val > fault_deadline.val)) {
		fault = FAULT_OK;
		debug_printf("Reset fault\n");
		/*
		 * Reset the PD state and communication on both side,
		 * so we can now re-negociate a voltage.
		 */
		return EC_ERROR_INVAL;
	}

	return EC_SUCCESS;

}

void pd_adc_interrupt(void)
{
	/* cut the power output */
	pd_power_supply_reset(0);
	/* Clear flags */
	STM32_ADC_ISR = 0x8e;
	/* record a special fault, the normal check will record the timeout */
	fault = FAULT_FAST_OCP;
}
DECLARE_IRQ(STM32_IRQ_ADC_COMP, pd_adc_interrupt, 1);

/* ----------------- Vendor Defined Messages ------------------ */
int pd_custom_vdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
	static int flash_offset;
	void *hash;
	int cmd = PD_VDO_CMD(payload[0]);
	int rsize = 1;
	debug_printf("%T] VDM/%d [%d] %08x\n", cnt, cmd, payload[0]);

	*rpayload = payload;
	switch (cmd) {
	case VDO_CMD_VERSION:
		memcpy(payload + 1, &version_data.version, 24);
		rsize = 7;
		break;
	case VDO_CMD_REBOOT:
		/* ensure the power supply is in a safe state */
		pd_power_supply_reset(0);
		cpu_reset();
		break;
	case VDO_CMD_RW_HASH:
		hash = flash_hash_rw();
		memcpy(payload + 1, hash, SHA1_DIGEST_SIZE);
		rsize = 6;
		break;
	case VDO_CMD_FLASH_ERASE:
		/* do not kill the code under our feet */
		if (!is_ro_mode())
			break;
		flash_offset = 0;
		flash_erase_rw();
		break;
	case VDO_CMD_FLASH_WRITE:
		/* do not kill the code under our feet */
		if (!is_ro_mode())
			break;
		flash_write_rw(flash_offset, 4*(cnt - 1),
			       (const char *)(payload+1));
		flash_offset += 4*(cnt - 1);
		break;
	case VDO_CMD_FLASH_HASH:
		/* this is not touching the code area */
		flash_write_rw(CONFIG_FW_RW_SIZE - 32, 4*cnt,
			       (const char *)(payload+1));
		break;
	case VDO_CMD_PING_ENABLE:
		pd_ping_enable(0, payload[1]);
		break;
	case VDO_CMD_CURRENT:
		/* return last measured current */
		payload[1] = ADC_TO_CURR_MA(vbus_amp);
		rsize = 2;
		break;
	default:
		/* Unknown : do not answer */
		return 0;
	}
	debug_printf("%T] DONE\n");
	/* respond (positively) to the request */
	payload[0] |= VDO_SRC_RESPONDER;

	return rsize;
}