summaryrefslogtreecommitdiff
path: root/chip/g/dcrypto/hmac_drbg.c
blob: bf49103e93e7ecdcf145e5f37e7ed1b96614bb8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "console.h"
#include "cryptoc/util.h"
#include "dcrypto.h"
#include "internal.h"
#include "trng.h"

/* HMAC_DRBG flow in NIST SP 800-90Ar1, 10.2, RFC 6979
 */
/* V = HMAC(K, V) */
static void update_v(const uint32_t *k, uint32_t *v)
{
	LITE_HMAC_CTX ctx;

	DCRYPTO_HMAC_SHA256_init(&ctx, k, SHA256_DIGEST_SIZE);
	HASH_update(&ctx.hash, v, SHA256_DIGEST_SIZE);
	memcpy(v, DCRYPTO_HMAC_final(&ctx), SHA256_DIGEST_SIZE);
}

/* K = HMAC(K, V || tag || p0 || p1 || p2) */
/* V = HMAC(K, V) */
static void update_kv(uint32_t *k, uint32_t *v, uint8_t tag,
		      const void *p0, size_t p0_len,
		      const void *p1, size_t p1_len,
		      const void *p2, size_t p2_len)
{
	LITE_HMAC_CTX ctx;

	DCRYPTO_HMAC_SHA256_init(&ctx, k, SHA256_DIGEST_SIZE);
	HASH_update(&ctx.hash, v, SHA256_DIGEST_SIZE);
	HASH_update(&ctx.hash, &tag, 1);
	HASH_update(&ctx.hash, p0, p0_len);
	HASH_update(&ctx.hash, p1, p1_len);
	HASH_update(&ctx.hash, p2, p2_len);
	memcpy(k, DCRYPTO_HMAC_final(&ctx), SHA256_DIGEST_SIZE);

	update_v(k, v);
}

static void update(struct drbg_ctx *ctx,
		   const void *p0, size_t p0_len,
		   const void *p1, size_t p1_len,
		   const void *p2, size_t p2_len)
{
	/* K = HMAC(K, V || 0x00 || provided_data) */
	/* V = HMAC(K, V) */
	update_kv(ctx->k, ctx->v, 0x00,
		  p0, p0_len, p1, p1_len, p2, p2_len);

	/* If no provided_data, stop. */
	if (p0_len + p1_len + p2_len == 0)
		return;

	/* K = HMAC(K, V || 0x01 || provided_data) */
	/* V = HMAC(K, V) */
	update_kv(ctx->k, ctx->v,
		  0x01,
		  p0, p0_len, p1, p1_len, p2, p2_len);
}

void hmac_drbg_init(struct drbg_ctx *ctx,
		    const void *p0, size_t p0_len,
		    const void *p1, size_t p1_len,
		    const void *p2, size_t p2_len)
{
	/* K = 0x00 0x00 0x00 ... 0x00 */
	always_memset(ctx->k,  0x00, sizeof(ctx->k));
	/* V = 0x01 0x01 0x01 ... 0x01 */
	always_memset(ctx->v,  0x01, sizeof(ctx->v));

	update(ctx, p0, p0_len, p1, p1_len, p2, p2_len);

	ctx->reseed_counter = 1;
}

void hmac_drbg_init_rfc6979(struct drbg_ctx *ctx, const p256_int *key,
			    const p256_int *message)
{
	hmac_drbg_init(ctx,
		       key->a, sizeof(key->a),
		       message->a, sizeof(message->a),
		       NULL, 0);
}

void hmac_drbg_init_rand(struct drbg_ctx *ctx, size_t nbits)
{
	int i;
	uint32_t x[(nbits + 31) / 32];

	for (i = 0; i < ARRAY_SIZE(x); ++i)
		x[i] = rand();

	hmac_drbg_init(ctx, &x, sizeof(x), NULL, 0, NULL, 0);
}

void hmac_drbg_reseed(struct drbg_ctx *ctx,
		      const void *p0, size_t p0_len,
		      const void *p1, size_t p1_len,
		      const void *p2, size_t p2_len)
{
	update(ctx, p0, p0_len, p1, p1_len, p2, p2_len);
	ctx->reseed_counter = 1;
}

int hmac_drbg_generate(struct drbg_ctx *ctx,
		       void *out, size_t out_len,
		       const void *input, size_t input_len)
{
	/* TODO(louiscollard): Assert maximum output length? */

	if (ctx->reseed_counter >= 10000)
		return 2;

	if (input_len)
		update(ctx, input, input_len, NULL, 0, NULL, 0);

	while (out_len) {
		size_t n = out_len > sizeof(ctx->v) ? sizeof(ctx->v) : out_len;

		update_v(ctx->k, ctx->v);

		memcpy(out, ctx->v, n);
		out += n;
		out_len -= n;
	}

	update(ctx, input, input_len, NULL, 0, NULL, 0);
	ctx->reseed_counter++;

	return 0;
}

void hmac_drbg_generate_p256(struct drbg_ctx *ctx, p256_int *k_out)
{
	hmac_drbg_generate(ctx,
			   k_out->a, sizeof(k_out->a),
			   NULL, 0);
}

void drbg_exit(struct drbg_ctx *ctx)
{
	always_memset(ctx->k,  0x00, sizeof(ctx->k));
	always_memset(ctx->v,  0x00, sizeof(ctx->v));
}

#ifdef CRYPTO_TEST_SETUP

/*
 * from the RFC 6979 A.2.5 example:
 *
 * curve: NIST P-256
 *
 * q = FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
 * (qlen = 256 bits)
 *
 * private key:
 * x = C9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721
 *
 * public key: U = xG
 * Ux = 60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
 * Uy = 7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
 *
 * Signature:
 * With SHA-256, message = "sample":
 * k = A6E3C57DD01ABE90086538398355DD4C3B17AA873382B0F24D6129493D8AAD60
 * r = EFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716
 * s = F7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8
 */
static int cmd_rfc6979(int argc, char **argv)
{
	static p256_int h1;
	static p256_int k;
	static const char message[] = "sample";
	static struct drbg_ctx drbg;

	static HASH_CTX ctx;
	int result;
	static const uint8_t priv_from_rfc[] = {
		0xC9, 0xAF, 0xA9, 0xD8, 0x45, 0xBA, 0x75, 0x16,
		0x6B, 0x5C, 0x21, 0x57, 0x67, 0xB1, 0xD6, 0x93,
		0x4E, 0x50, 0xC3, 0xDB, 0x36, 0xE8, 0x9B, 0x12,
		0x7B, 0x8A, 0x62, 0x2B, 0x12, 0x0F, 0x67, 0x21
	};
	static const uint8_t k_from_rfc[] = {
		0xA6, 0xE3, 0xC5, 0x7D, 0xD0, 0x1A, 0xBE, 0x90,
		0x08, 0x65, 0x38, 0x39, 0x83, 0x55, 0xDD, 0x4C,
		0x3B, 0x17, 0xAA, 0x87, 0x33, 0x82, 0xB0, 0xF2,
		0x4D, 0x61, 0x29, 0x49, 0x3D, 0x8A, 0xAD, 0x60
	};
	p256_int *x = (p256_int *)priv_from_rfc;
	p256_int *reference_k = (p256_int *)k_from_rfc;

	/* h1 = H(m) */
	DCRYPTO_SHA256_init(&ctx, 1);
	HASH_update(&ctx, message, sizeof(message) - 1);
	memcpy(&h1, HASH_final(&ctx), SHA256_DIGEST_SIZE);

	hmac_drbg_init_rfc6979(&drbg, x, &h1);
	do {
		hmac_drbg_generate_p256(&drbg, &k);
		ccprintf("K = %ph\n", HEX_BUF(&k, 32));
	} while (p256_cmp(&SECP256r1_nMin2, &k) < 0);
	drbg_exit(&drbg);
	result = p256_cmp(&k, reference_k);
	ccprintf("K generation: %s\n", result ? "FAIL" : "PASS");

	return result ? EC_ERROR_INVAL : EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(rfc6979, cmd_rfc6979, NULL, NULL);

/*
 * Test vectors from the NIST Cryptographic Algorithm Validation Program.
 *
 * These are the first two examples from the SHA-256, without prediction
 * resistance, and with reseed supported.
 */
#define HMAC_TEST_COUNT 2
static int cmd_hmac_drbg(int argc, char **argv)
{
	static struct drbg_ctx ctx;

	static const uint8_t init_entropy[HMAC_TEST_COUNT][32] = {
		{
			0x06, 0x03, 0x2C, 0xD5, 0xEE, 0xD3, 0x3F, 0x39, 0x26,
			0x5F, 0x49, 0xEC, 0xB1, 0x42, 0xC5, 0x11, 0xDA, 0x9A,
			0xFF, 0x2A, 0xF7, 0x12, 0x03, 0xBF, 0xFA, 0xF3, 0x4A,
			0x9C, 0xA5, 0xBD, 0x9C, 0x0D
		},
		{
			0xAA, 0xDC, 0xF3, 0x37, 0x78, 0x8B, 0xB8, 0xAC, 0x01,
			0x97, 0x66, 0x40, 0x72, 0x6B, 0xC5, 0x16, 0x35, 0xD4,
			0x17, 0x77, 0x7F, 0xE6, 0x93, 0x9E, 0xDE, 0xD9, 0xCC,
			0xC8, 0xA3, 0x78, 0xC7, 0x6A
		},
	};

	static const uint8_t init_nonce[HMAC_TEST_COUNT][16] = {
		{
			0x0E, 0x66, 0xF7, 0x1E, 0xDC, 0x43, 0xE4, 0x2A, 0x45,
			0xAD, 0x3C, 0x6F, 0xC6, 0xCD, 0xC4, 0xDF
		},
		{
			0x9C, 0xCC, 0x9D, 0x80, 0xC8, 0x9A, 0xC5, 0x5A, 0x8C,
			0xFE, 0x0F, 0x99, 0x94, 0x2F, 0x5A, 0x4D
		},
	};

	static const uint8_t reseed_entropy[HMAC_TEST_COUNT][32] = {
		{
			0x01, 0x92, 0x0A, 0x4E, 0x66, 0x9E, 0xD3, 0xA8, 0x5A,
			0xE8, 0xA3, 0x3B, 0x35, 0xA7, 0x4A, 0xD7, 0xFB, 0x2A,
			0x6B, 0xB4, 0xCF, 0x39, 0x5C, 0xE0, 0x03, 0x34, 0xA9,
			0xC9, 0xA5, 0xA5, 0xD5, 0x52
		},
		{
			0x03, 0xA5, 0x77, 0x92, 0x54, 0x7E, 0x0C, 0x98, 0xEA,
			0x17, 0x76, 0xE4, 0xBA, 0x80, 0xC0, 0x07, 0x34, 0x62,
			0x96, 0xA5, 0x6A, 0x27, 0x0A, 0x35, 0xFD, 0x9E, 0xA2,
			0x84, 0x5C, 0x7E, 0x81, 0xE2
		}
	};

	static const uint8_t expected_output[HMAC_TEST_COUNT][128] = {
		{
			0x76, 0xFC, 0x79, 0xFE, 0x9B, 0x50, 0xBE, 0xCC, 0xC9,
			0x91, 0xA1, 0x1B, 0x56, 0x35, 0x78, 0x3A, 0x83, 0x53,
			0x6A, 0xDD, 0x03, 0xC1, 0x57, 0xFB, 0x30, 0x64, 0x5E,
			0x61, 0x1C, 0x28, 0x98, 0xBB, 0x2B, 0x1B, 0xC2, 0x15,
			0x00, 0x02, 0x09, 0x20, 0x8C, 0xD5, 0x06, 0xCB, 0x28,
			0xDA, 0x2A, 0x51, 0xBD, 0xB0, 0x38, 0x26, 0xAA, 0xF2,
			0xBD, 0x23, 0x35, 0xD5, 0x76, 0xD5, 0x19, 0x16, 0x08,
			0x42, 0xE7, 0x15, 0x8A, 0xD0, 0x94, 0x9D, 0x1A, 0x9E,
			0xC3, 0xE6, 0x6E, 0xA1, 0xB1, 0xA0, 0x64, 0xB0, 0x05,
			0xDE, 0x91, 0x4E, 0xAC, 0x2E, 0x9D, 0x4F, 0x2D, 0x72,
			0xA8, 0x61, 0x6A, 0x80, 0x22, 0x54, 0x22, 0x91, 0x82,
			0x50, 0xFF, 0x66, 0xA4, 0x1B, 0xD2, 0xF8, 0x64, 0xA6,
			0xA3, 0x8C, 0xC5, 0xB6, 0x49, 0x9D, 0xC4, 0x3F, 0x7F,
			0x2B, 0xD0, 0x9E, 0x1E, 0x0F, 0x8F, 0x58, 0x85, 0x93,
			0x51, 0x24
		},
		{
			0x17, 0xD0, 0x9F, 0x40, 0xA4, 0x37, 0x71, 0xF4, 0xA2,
			0xF0, 0xDB, 0x32, 0x7D, 0xF6, 0x37, 0xDE, 0xA9, 0x72,
			0xBF, 0xFF, 0x30, 0xC9, 0x8E, 0xBC, 0x88, 0x42, 0xDC,
			0x7A, 0x9E, 0x3D, 0x68, 0x1C, 0x61, 0x90, 0x2F, 0x71,
			0xBF, 0xFA, 0xF5, 0x09, 0x36, 0x07, 0xFB, 0xFB, 0xA9,
			0x67, 0x4A, 0x70, 0xD0, 0x48, 0xE5, 0x62, 0xEE, 0x88,
			0xF0, 0x27, 0xF6, 0x30, 0xA7, 0x85, 0x22, 0xEC, 0x6F,
			0x70, 0x6B, 0xB4, 0x4A, 0xE1, 0x30, 0xE0, 0x5C, 0x8D,
			0x7E, 0xAC, 0x66, 0x8B, 0xF6, 0x98, 0x0D, 0x99, 0xB4,
			0xC0, 0x24, 0x29, 0x46, 0x45, 0x23, 0x99, 0xCB, 0x03,
			0x2C, 0xC6, 0xF9, 0xFD, 0x96, 0x28, 0x47, 0x09, 0xBD,
			0x2F, 0xA5, 0x65, 0xB9, 0xEB, 0x9F, 0x20, 0x04, 0xBE,
			0x6C, 0x9E, 0xA9, 0xFF, 0x91, 0x28, 0xC3, 0xF9, 0x3B,
			0x60, 0xDC, 0x30, 0xC5, 0xFC, 0x85, 0x87, 0xA1, 0x0D,
			0xE6, 0x8C
		}
	};

	static uint8_t output[128];

	int i, cmp_result;

	for (i = 0; i < HMAC_TEST_COUNT; i++) {
		hmac_drbg_init(&ctx,
			       init_entropy[i], sizeof(init_entropy[i]),
			       init_nonce[i], sizeof(init_nonce[i]),
			       NULL, 0);

		hmac_drbg_reseed(&ctx,
				 reseed_entropy[i], sizeof(reseed_entropy[i]),
				 NULL, 0,
				 NULL, 0);

		hmac_drbg_generate(&ctx,
				   output, sizeof(output),
				   NULL, 0);

		hmac_drbg_generate(&ctx,
				   output, sizeof(output),
				   NULL, 0);

		cmp_result = memcmp(output, expected_output[i], sizeof(output));
		ccprintf("HMAC DRBG generate test %d, %s\n",
			 i, cmp_result ? "failed" : "passed");
	}

	return 0;
}
DECLARE_SAFE_CONSOLE_COMMAND(hmac_drbg, cmd_hmac_drbg, NULL, NULL);

/*
 * Sanity check to exercise random initialization.
 */
static int cmd_hmac_drbg_rand(int argc, char **argv)
{
	static struct drbg_ctx ctx;
	static uint8_t output[128];

	int i;

	hmac_drbg_init_rand(&ctx, 256);

	hmac_drbg_generate(&ctx, output, sizeof(output), NULL, 0);

	ccprintf("Randomly initialized HMAC DRBG, 1024 bit output: ");

	for (i = 0; i < sizeof(output); i++)
		ccprintf("%x", output[i]);
	ccprintf("\n");

	return 0;
}
DECLARE_SAFE_CONSOLE_COMMAND(hmac_drbg_rand, cmd_hmac_drbg_rand, NULL, NULL);
#endif /* CRYPTO_TEST_SETUP */