summaryrefslogtreecommitdiff
path: root/chip/g/pmu.c
blob: b2841fe2899f8edb5df549c1eeb25104f89c54f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "pmu.h"
#include "task.h"

/*
 * RC Trim constants
 */
#define RCTRIM_RESOLUTION       (12)
#define RCTRIM_LOAD_VAL	        (1 << 11)
#define RCTRIM_RANGE_MAX	(7 * 7)
#define RCTRIM_RANGE_MIN	(-8 * 7)
#define RCTRIM_RANGE		(RCTRIM_RANGE_MAX - RCTRIM_RANGE_MIN + 1)

/*
 * Enable peripheral clock
 * @param perih Peripheral from @ref uint32_t
 */
void pmu_clock_en(uint32_t periph)
{
	if (periph <= 31)
		GR_PMU_PERICLKSET0 = (1 << periph);
	else
		GR_PMU_PERICLKSET1 = (1 << (periph - 32));
}

/*
 * Disable peripheral clock
 * @param perih Peripheral from @ref uint32_t
 */
void pmu_clock_dis(uint32_t periph)
{
	if (periph <= 31)
		GR_PMU_PERICLKCLR0 = (1 << periph);
	else
		GR_PMU_PERICLKCLR1 = (1 << (periph - 32));
}

/*
 * Peripheral reset
 * @param periph Peripheral from @ref uint32_t
 */
void pmu_peripheral_rst(uint32_t periph)
{
	/* Reset high */
	if (periph <= 31)
		GR_PMU_RST0 = 1 << periph;
	else
		GR_PMU_RST1 = 1 << (periph - 32);
}

/*
 * Internal helper to convert value to trim code
 */
static uint32_t _pmu_value_to_trim(uint32_t val)
{
	uint32_t base = val / 7;
	uint32_t mod  = val % 7;
	uint32_t code = 0x0;
	uint32_t digit;

	/* Increasing count from right to left */
	for (digit = 0; digit < 7; digit++) {
		if (digit < mod)
			code |= (((base + 1) & 0xF) << (4 * digit));
		else
			code |= ((base & 0xF) << (4 * digit));
	}

	return code;
}

/*
 * Run the RC calibration counters
 * This must be used otherwise the counters may get stuck
 */
static uint32_t _pmu_run_rc_counters(uint32_t load_val, uint32_t trim_val)
{
	uint32_t trim_code;

	/* Convert value to trim code */
	trim_code = _pmu_value_to_trim(trim_val);

	/* Set the trim value */
	GWRITE_FIELD(XO, OSC_RC, TRIM, trim_code);

	/* Reset counters */
	GR_XO_OSC_RC_CAL_RSTB = 0x0;
	GR_XO_OSC_RC_CAL_RSTB = 0x1;

	/* Load */
	GR_XO_OSC_RC_CAL_LOAD = load_val;

	/* Do calibration */
	GR_XO_OSC_RC_CAL_START = 0x1;

	/*
	* There is a small race condition because of the delay in dregfile.
	* The start doesn't actually appear for 2 clock cycles after the write.
	* So, poll until done goes low.
	*/
	while (GR_XO_OSC_RC_CAL_DONE)
		;

	/* Wait until it's done */
	while (!GR_XO_OSC_RC_CAL_DONE)
		;

	/* Calculate the difference */
	return GR_XO_OSC_RC_CAL_LOAD - GR_XO_OSC_RC_CAL_COUNT;
}

/*
 * Calibrate RC trim
 */
uint32_t pmu_calibrate_rc_trim(void)
{
	uint32_t size, iter;
	uint32_t mid;
	uint32_t diff;

	/*
	* Switch to crystal for calibration
	* This should work since we are on an uncalibrated RC trim clock
	*/
	pmu_clock_switch_xo();

	/* Clear the HOLD signal on dxo */
	GR_XO_OSC_CLRHOLD = GC_XO_OSC_CLRHOLD_RC_TRIM_MASK;

	/* Clear EN bit while iterating through codes */
	GWRITE_FIELD(XO, OSC_RC, EN, 0);

	/* Begin binary search */
	mid = RCTRIM_RANGE_MAX - (RCTRIM_RANGE / 2);
	size = RCTRIM_RANGE / 2;
	for (iter = 0; iter < 8; iter++) {
		/* Run the counters */
		diff = _pmu_run_rc_counters(RCTRIM_LOAD_VAL, mid);

		/*
		 * Test to see whether we are still outside of
		 * our desired resolution
		 */
		if ((diff < -RCTRIM_RESOLUTION)
			|| (diff > RCTRIM_RESOLUTION)) {
			if (diff > 0)
				mid -= size / 2;
			else
				mid += size / 2;
		}

		/* Move to next range, round up */
		size = (size + 1) >> 1;
	}

	/* Set the final trim value, set EN bit to lock in the code */
	GR_XO_OSC_RC = (_pmu_value_to_trim(mid) << GC_XO_OSC_RC_TRIM_LSB)
			| (0x1 << GC_XO_OSC_RC_EN_LSB);

	/* Set EN bit to lock in this trim_code */
	/* GWRITE_FIELD(XO, OSC_RC, EN, 1); */

	/* Set the HOLD signal on dxo */
	GR_XO_OSC_SETHOLD = GC_XO_OSC_SETHOLD_RC_TRIM_MASK;

	/* Switch back to the RC trim now that we are calibrated */
	/* pmu_clock_switch_rc_trim(); */

	return _pmu_value_to_trim(mid);
}

/*
 * Switch system clock to RC no trim
 */
uint32_t pmu_clock_switch_rc_notrim(void)
{
	uint32_t osc_sel;

	/* check which clock we are running on */
	osc_sel = GR_PMU_OSC_SELECT_STAT;

	if (osc_sel == GC_PMU_OSC_SELECT_RC) {
		/* Already on untrimmed RC */
		return 0;
	} else if (osc_sel == GC_PMU_OSC_SELECT_XTL) {
		/* Need to switch to RC trimmed first */
		pmu_clock_switch_rc_trim(1);
	}

	/* Turn on XO clock */
	pmu_clock_en(PERIPH_XO);

	/* Power up RC notrim clock if it's currently off */
	GWRITE_FIELD(PMU, CLRDIS, RC_NOTRIM, 1);

	/* Switch to the clock */
	GR_PMU_OSC_HOLD_CLR = 0x1; /* make sure the hold signal is clear */
	GR_PMU_OSC_SELECT   = GC_PMU_OSC_SELECT_RC;
	/* make sure the hold signal is set for future power downs */
	GR_PMU_OSC_HOLD_SET = 0x1;

	return 0;
}

/*
 * enable clock doubler for USB purposes
 */
void pmu_enable_clock_doubler(void)
{
	/* enable stuff */
	GREG32(XO, OSC_ADC_CAL_FREQ2X) =
		(GC_XO_OSC_ADC_CAL_FREQ2X_CNTL_DEFAULT
			<< GC_XO_OSC_ADC_CAL_FREQ2X_CNTL_LSB) |
		(1 << GC_XO_OSC_ADC_CAL_FREQ2X_EN_LSB);
	/* enable more stuff */
	GREG32(XO, OSC_CLKOUT) =
		(1 << GC_XO_OSC_CLKOUT_ADC_EN_LSB)  |
		(1 << GC_XO_OSC_CLKOUT_PLL_EN_LSB)  |
		(1 << GC_XO_OSC_CLKOUT_BADC_EN_LSB) |
		(1 << GC_XO_OSC_CLKOUT_USB_EN_LSB);

	/* make sure doubled clock is selected */
	GREG32(XO, OSC_24_48B_SEL) = GC_XO_OSC_24_48B_SEL_DEFAULT;
}

/*
 * Switch system clock to RC trim
 */
uint32_t pmu_clock_switch_rc_trim(uint32_t skip_calibration)
{
	uint32_t trimmed;
	uint32_t trim_code;
	uint32_t osc_sel;

	/* check which clock we are running on */
	osc_sel = GREG32(PMU, OSC_SELECT_STAT);

	if (osc_sel == GC_PMU_OSC_SELECT_RC_TRIM) {
		/*
		 * already using the rc_trim so nothing to do here
		 * make sure the hold signal is set for future power downs
		 */
		GREG32(PMU, OSC_HOLD_SET) = 0x1;
		return 0;
	}

	/* Turn on DXO clock so we can write in the trim code in */
	pmu_clock_en(PERIPH_XO);

	/* Disable the RC Trim flops in the glitchless switch */
	GWRITE_FIELD(PMU, OSC_CTRL, RC_TRIM_READYB, 0x1);

	/* Power up the clock if not already powered up */
	GREG32(PMU, CLRDIS) = 1 << GC_PMU_SETDIS_RC_TRIM_LSB;

	/* Check for the trim code in the always-on domain
	 * before looking at the fuse
	 */
	if (GREAD_FIELD(XO, OSC_RC_STATUS, EN)) {
		trim_code = GREAD_FIELD(XO, OSC_RC_STATUS, TRIM);
		trimmed = 1;
	} else if (GREAD_FIELD(PMU, FUSE_RD_RC_OSC_26MHZ, EN)) {
		trim_code = GREAD_FIELD(PMU, FUSE_RD_RC_OSC_26MHZ, TRIM);
		trimmed = 1;
	} else {
		if (skip_calibration) {
			trim_code = GREAD_FIELD(XO, OSC_RC, TRIM);
			trimmed = 0;
		} else {
			trim_code = pmu_calibrate_rc_trim();
			trimmed = 1;
		}
	}

	/* Write the trim code to dxo */
	if (trimmed) {
		/* clear the hold signal */
		GREG32(XO, OSC_CLRHOLD) = GC_XO_OSC_CLRHOLD_RC_TRIM_MASK;

		/* Write the trim code and enable the trim code */
		GREG32(XO, OSC_RC) = (trim_code << GC_XO_OSC_RC_TRIM_LSB) |
					(1 << GC_XO_OSC_RC_EN_LSB);

		/* set the hold signal */
		GREG32(XO, OSC_SETHOLD) = 1 << GC_XO_OSC_SETHOLD_RC_TRIM_LSB;
	}

	/* Enable the flops for RC TRIM in the glitchless switch */
	GWRITE_FIELD(PMU, OSC_CTRL, RC_TRIM_READYB, 0x0);

	/*
	* Switch the select signal
	* make sure the hold signal is clear
	*/
	GREG32(PMU, OSC_HOLD_CLR) = 0x1;
	GREG32(PMU, OSC_SELECT)   = GC_PMU_OSC_SELECT_RC_TRIM;

	/* make sure the hold signal is set for future power downs */
	GREG32(PMU, OSC_HOLD_SET) = 0x1;

	return !trimmed;
}

/*
 * Switch system clock to XO
 * @returns The value of XO_OSC_XTL_FSM_STATUS.	0 = okay, 1 = error.
 */
uint32_t pmu_clock_switch_xo(void)
{
	uint32_t osc_sel;
	uint32_t trim_code, final_trim, fsm_done, fsm_status;

	/* check which clock we are running on */
	osc_sel = GREG32(PMU, OSC_SELECT_STAT);

	if (osc_sel == GC_PMU_OSC_SELECT_XTL) {
		/*
		 * already using the crystal so nothing to do here
		 * make sure the hold signal is set for future power downs
		 */
		GREG32(PMU, OSC_HOLD_SET) = 0x1;
		return 0;
	} else if (osc_sel == GC_PMU_OSC_SELECT_RC) {
		/*
		 * RC untrimmed clock. We must go through
		 * the trimmed clock first to avoid glitching
		 */
		pmu_clock_switch_rc_trim(1);
	}

	/* Turn on DXO clock so we can write in the trim code in */
	pmu_clock_en(PERIPH_XO);

	/* Disable the XTL Clock */
	GWRITE_FIELD(PMU, OSC_CTRL, XTL_READYB, 0x1);

	/* Power up the clock if not already powered up */
	GREG32(PMU, CLRDIS) = 1 << GC_PMU_CLRDIS_XTL_LSB;

	/* Try to find the trim code */
	trim_code = 0;

	/*
	* Check for the trim code in the always-on domain
	* before looking at the fuse
	*/
	if (GREAD_FIELD(XO, OSC_XTL_TRIM_STAT, EN)) {
		/* nothing to do */
		trim_code = GREAD_FIELD(XO, OSC_XTL_TRIM_STAT, CODE);

	} else if (GREAD_FIELD(PMU, FUSE_RD_XTL_OSC_26MHZ, EN)) {

		/* push the fuse trim code as the saved trim code */
		trim_code = GREAD_FIELD(PMU, FUSE_RD_XTL_OSC_26MHZ, TRIM);

		/* make sure the hold signal is clear */
		GREG32(XO, OSC_CLRHOLD)  = 1 << GC_XO_OSC_CLRHOLD_XTL_LSB;
		GREG32(XO, OSC_XTL_TRIM) =
			(trim_code << GC_XO_OSC_XTL_TRIM_CODE_LSB)
				| (0x1 << GC_XO_OSC_XTL_TRIM_EN_LSB);
	} else {
		/* Run the crystal FSM to calibrate the crystal trim */
		fsm_done = GREG32(XO, OSC_XTL_FSM);
		if (fsm_done & GC_XO_OSC_XTL_FSM_DONE_MASK) {
			/*
			 * If FSM done is high, it means we already ran it
			 * so let's not run it again
			 * DO NOTHING
			 */
		} else {
			/* reset FSM */
			GREG32(XO, OSC_XTL_FSM_EN) = 0x0;
			GREG32(XO, OSC_XTL_FSM_EN) = GC_XO_OSC_XTL_FSM_EN_KEY;
			while (!(fsm_done & GC_XO_OSC_XTL_FSM_DONE_MASK))
				fsm_done = GREG32(XO, OSC_XTL_FSM);
		}
	}

	/* Check the status and final trim value */
	/* max_trim = GREAD_FIELD(XO, OSC_XTL_FSM_CFG, TRIM_MAX); */
	final_trim = GREAD_FIELD(XO, OSC_XTL_FSM, TRIM);
	fsm_status = GREAD_FIELD(XO, OSC_XTL_FSM, STATUS);

	/*
	 * Save the trim for future powerups
	 * make sure the hold signal is clear (may have already been cleared)
	 */
	GREG32(XO, OSC_CLRHOLD)  = 1 << GC_XO_OSC_CLRHOLD_XTL_LSB;
	GREG32(XO, OSC_XTL_TRIM) = (final_trim << GC_XO_OSC_XTL_TRIM_CODE_LSB) |
				 (1 << GC_XO_OSC_XTL_TRIM_EN_LSB);

	/* make sure the hold signal is set for future power downs */
	GREG32(XO, OSC_SETHOLD)  = 1 << GC_XO_OSC_SETHOLD_XTL_LSB;

	/* Enable the flops for XTL in the glitchless switch */
	GWRITE_FIELD(PMU, OSC_CTRL, XTL_READYB, 0x0);

	/*
	* Switch the select signal
	* make sure the hold signal is clear
	*/
	GREG32(PMU, OSC_HOLD_CLR) = 0x1;
	GREG32(PMU, OSC_SELECT)   = GC_PMU_OSC_SELECT_XTL;

	/* make sure the hold signal is set for future power downs */
	GREG32(PMU, OSC_HOLD_SET) = 0x1;

	return !fsm_status;
}

/*
 * Enter sleep mode and handle exiting from sleep mode
 * @warning The CPU must be in RC no trim mode before calling this function
 */
void pmu_sleep(void)
{
	uint32_t val;

	/* Enable PMU sleep interrupts */
	GREG32(PMU, ICTRL) = 1 << GC_PMU_ICTRL_SLEEP_LSB;

	/* nvic_irq_en(GC_IRQNUM_PMU_PMUINT); */

	/* Enable CPU SLEEPDEEP */
	val = GREG32(M3, SCR);
	GREG32(M3, SCR) = val | 0x4;

	/* Enable WIC mode */
	GREG32(PMU, SETWIC) = 1 << GC_PMU_SETWIC_PROC0_LSB;

	/* Disable power domains for entering sleep mode */
	GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB)	|
			(1 << GC_PMU_SETDIS_VDDL_LSB)		|
			(1 << GC_PMU_SETDIS_VDDA_LSB)		|
			(1 << GC_PMU_SETDIS_VDDSRM_LSB)		|
			(1 << GC_PMU_SETDIS_BGAP_LSB)		|
			(1 << GC_PMU_SETDIS_VDDXO_LSB)		|
			(1 << GC_PMU_SETDIS_VDDXOLP_LSB)	|
			(1 << GC_PMU_SETDIS_XTL_LSB)		|
			(1 << GC_PMU_SETDIS_RC_TRIM_LSB)	|
			(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB)	|
			(1 << GC_PMU_SETDIS_BATMON_LSB)		|
			(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB)	|
			(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);

	/* Wait for exit interrupt
	 * @todo Add code to disable all non-PMU interrupts.
	 */
	__asm__("wfi");

	/* Disable WIC mode */
	GREG32(PMU, CLRWIC) = 1 << GC_PMU_CLRWIC_PROC0_LSB;

	/* Disable CPU SLEEPDEEP */
	val = GREG32(M3, SCR);
	GREG32(M3, SCR) = val & (~0x4);

	/* Re-enable power domains */
	GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB)	|
			(1 << GC_PMU_CLRDIS_VDDL_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDA_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDSRM_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDIOF_LSB)		|
			(1 << GC_PMU_CLRDIS_BGAP_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDXO_LSB);

#ifdef __FIX_ME__
	GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB)	|
			(1 << GC_PMU_CLRDIS_VDDL_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDA_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDSRM_LSB)		|
			(1 << GC_PMU_CLRDIS_BGAP_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDXO_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDXOLP_LSB)	|
			(1 << GC_PMU_CLRDIS_XTL_LSB)		|
			(1 << GC_PMU_CLRDIS_RC_TRIM_LSB)	|
			(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB)	|
			(1 << GC_PMU_CLRDIS_BATMON_LSB)		|
			(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB)	|
			(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
#endif
}

/*
 * Enter hibernate mode
 * This function does not return. The powerdown exit event will
 * cause the CPU to begin executing the system / app bootloader.
 * @warning The CPU must be in RC no trim mode
 */
void pmu_hibernate(void)
{
	/* Turn off power to everything except retention domains */
	GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB)	|
			(1 << GC_PMU_SETDIS_VDDL_LSB)		|
			(1 << GC_PMU_SETDIS_VDDA_LSB)		|
			(1 << GC_PMU_SETDIS_VDDSRM_LSB)		|
			(1 << GC_PMU_SETDIS_VDDIOF_LSB)		|
			(1 << GC_PMU_SETDIS_VDDLK_LSB)		|
			(1 << GC_PMU_SETDIS_VDDSK_LSB)		|
			(1 << GC_PMU_SETDIS_BIAS_LSB)		|
			(1 << GC_PMU_SETDIS_BGAP_LSB)		|
			(1 << GC_PMU_SETDIS_VDDXO_LSB)		|
			(1 << GC_PMU_SETDIS_VDDXOLP_LSB)	|
			(1 << GC_PMU_SETDIS_XTL_LSB)		|
			(1 << GC_PMU_SETDIS_RC_TRIM_LSB)	|
			(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB)	|
			(1 << GC_PMU_SETDIS_BATMON_LSB)		|
			(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB)	|
			(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);

	/* Wait for powerdown */
	for (;;)
		__asm__("wfi");
}

/*
 * Exit hibernate mode
 * This function should be called after a powerdown exit event.
 * It handles turning the power domains back on.
 * Clocks will be left in RC no trim.
 */
void pmu_hibernate_exit(void)
{
	/* Turn on power to everything */
	GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDL_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDA_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDSRM_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDIOF_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDLK_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDSK_LSB)		|
				(1 << GC_PMU_CLRDIS_BIAS_LSB)		|
				(1 << GC_PMU_CLRDIS_BGAP_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDXO_LSB)		|
				(1 << GC_PMU_CLRDIS_VDDXOLP_LSB)	|
				(1 << GC_PMU_CLRDIS_XTL_LSB)		|
				(1 << GC_PMU_CLRDIS_RC_TRIM_LSB)	|
				(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB)	|
				(1 << GC_PMU_CLRDIS_BATMON_LSB)		|
				(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB)	|
				(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
}

/*
 * Enter powerdown mode
 * This function does not return. The powerdown exit event will
 * cause the CPU to begin executing the system / app bootloader.
 * @warning The CPU must be in RC no trim mode
 */
void pmu_powerdown(void)
{
	/* Turn off power to everything */
	GREG32(PMU, SETDIS) = (1 << GC_PMU_SETDIS_START_LSB)		|
				(1 << GC_PMU_SETDIS_VDDL_LSB)		|
				(1 << GC_PMU_SETDIS_VDDA_LSB)		|
				(1 << GC_PMU_SETDIS_VDDSRM_LSB)		|
				(1 << GC_PMU_SETDIS_VDDIOF_LSB)		|
				(1 << GC_PMU_SETDIS_VDDLK_LSB)		|
				(1 << GC_PMU_SETDIS_VDDSK_LSB)		|
				(1 << GC_PMU_SETDIS_VDDSRK_LSB)		|
				(1 << GC_PMU_SETDIS_RETCOMPREF_LSB)	|
				(1 << GC_PMU_SETDIS_BIAS_LSB)		|
				(1 << GC_PMU_SETDIS_BGAP_LSB)		|
				(1 << GC_PMU_SETDIS_VDDXO_LSB)		|
				(1 << GC_PMU_SETDIS_VDDXOLP_LSB)	|
				(1 << GC_PMU_SETDIS_XTL_LSB)		|
				(1 << GC_PMU_SETDIS_RC_TRIM_LSB)	|
				(1 << GC_PMU_SETDIS_RC_NOTRIM_LSB)	|
				(1 << GC_PMU_SETDIS_BATMON_LSB)		|
				(1 << GC_PMU_SETDIS_FST_BRNOUT_PWR_LSB)	|
				(1 << GC_PMU_SETDIS_FST_BRNOUT_LSB);

	/* Wait for powerdown */
	for (;;)
		__asm__("wfi");
}

/*
 * Exit powerdown mode
 * This function should be called after a powerdown exit event.
 * It handles turning the power domains back on.
 * Clocks will be left in RC no trim.
 */
void pmu_powerdown_exit(void)
{
	/* Turn on power to everything */
	GREG32(PMU, CLRDIS) = (1 << GC_PMU_CLRDIS_START_LSB)	|
			(1 << GC_PMU_CLRDIS_VDDL_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDA_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDSRM_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDIOF_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDLK_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDSK_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDSRK_LSB)		|
			(1 << GC_PMU_CLRDIS_RETCOMPREF_LSB)	|
			(1 << GC_PMU_CLRDIS_BIAS_LSB)		|
			(1 << GC_PMU_CLRDIS_BGAP_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDXO_LSB)		|
			(1 << GC_PMU_CLRDIS_VDDXOLP_LSB)	|
			(1 << GC_PMU_CLRDIS_XTL_LSB)		|
			(1 << GC_PMU_CLRDIS_RC_TRIM_LSB)	|
			(1 << GC_PMU_CLRDIS_RC_NOTRIM_LSB)	|
			(1 << GC_PMU_CLRDIS_BATMON_LSB)		|
			(1 << GC_PMU_CLRDIS_FST_BRNOUT_PWR_LSB)	|
			(1 << GC_PMU_CLRDIS_FST_BRNOUT_LSB);
}

/**
 * Handle PMU interrupt
 */
void pmu_interrupt(void)
{
	/* TBD */
}
DECLARE_IRQ(GC_IRQNUM_PMU_PMUINT, pmu_interrupt, 1);