summaryrefslogtreecommitdiff
path: root/chip/it83xx/hwtimer.c
blob: c0a3c29bbaaa186b787741ff710720a76c0a66cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Hardware timers driver */

#include "cpu.h"
#include "common.h"
#include "hooks.h"
#include "hwtimer.h"
#include "hwtimer_chip.h"
#include "irq_chip.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "watchdog.h"

/*
 * The IT839X series support combinational mode for combining specific pairs of
 * timers: 3(24-bit) and 4(32-bit) / timer 5(24-bit) and 6(32-bit) /
 * timer 7(24-bit) and 8(32-bit).
 * That means we will have a 56-bit timer if timer 3(TIMER_L) and
 * timer 4(TIMER_H) is combined (bit3 @ IT83XX_ETWD_ETXCTRL).
 * For a 32-bit MHz free-running counter, we select 8MHz clock source
 * for timer 3(TIMER_L) and 4(TIMER_H).
 * Counter setting value register(IT83XX_ETWD_ETXCNTLR) and counter observation
 * value register(IT83XX_ETWD_ETXCNTOR) of timer 3 and 4 need to be shifted by
 * 3 (2^3). So that each count will be equal to 0.125us.
 *
 * For example, if
 * __hw_clock_source_set() set 0 us, the counter setting register are
 * timer 3(TIMER_L) ((0xffffffff << 3) & 0xffffff) = 0xfffff8
 * timer 4(TIMER_H) (0xffffffff >> (24-3)) = 0x000007ff
 * The 56-bit 8MHz timer = 0x000007fffffff8
 * 0x000007fffffff8 / (2^3) = 0xffffffff(32-bit MHz free-running counter)
 *
 * Note:
 * In combinational mode, the counter observation value of
 * timer 4(TIMER_H), 6, 8 will in incrementing order.
 * For the above example, the counter observation value registers will be
 * timer 3(TIMER_L) 0xfffff8
 * timer 4(TIMER_H) ~0x000007ff = 0xfffff800
 *
 * The following will describe timer 3 and 4's operation in combinational mode:
 * 1. When timer 3(TIMER_L) observation value counting down to 0,
      timer 4(TIMER_H) observation value++.
 * 2. Timer 3(TIMER_L) observation value = counter setting register.
 * 3. Timer 3(TIMER_L) interrupt occurs if interrupt is enabled.
 * 4. When timer 4(TIMER_H) observation value overflows.
 * 5. Timer 4(TIMER_H) observation value = ~counter setting register.
 * 6. Timer 4(TIMER_H) interrupt occurs.
 *
 * IT839X only supports terminal count interrupt. We need a separate
 * 8 MHz 32-bit timer to handle events.
 */

#define MS_TO_COUNT(hz, ms) ((hz) * (ms) / 1000)

const struct ext_timer_ctrl_t et_ctrl_regs[] = {
	{&IT83XX_INTC_IELMR19, &IT83XX_INTC_IPOLR19, &IT83XX_INTC_ISR19, 0x08,
		IT83XX_IRQ_EXT_TIMER3},
	{&IT83XX_INTC_IELMR19, &IT83XX_INTC_IPOLR19, &IT83XX_INTC_ISR19, 0x10,
		IT83XX_IRQ_EXT_TIMER4},
	{&IT83XX_INTC_IELMR19, &IT83XX_INTC_IPOLR19, &IT83XX_INTC_ISR19, 0x20,
		IT83XX_IRQ_EXT_TIMER5},
	{&IT83XX_INTC_IELMR19, &IT83XX_INTC_IPOLR19, &IT83XX_INTC_ISR19, 0x40,
		IT83XX_IRQ_EXT_TIMER6},
	{&IT83XX_INTC_IELMR19, &IT83XX_INTC_IPOLR19, &IT83XX_INTC_ISR19, 0x80,
		IT83XX_IRQ_EXT_TIMER7},
	{&IT83XX_INTC_IELMR10, &IT83XX_INTC_IPOLR10, &IT83XX_INTC_ISR10, 0x01,
		IT83XX_IRQ_EXT_TMR8},
};
BUILD_ASSERT(ARRAY_SIZE(et_ctrl_regs) == EXT_TIMER_COUNT);

static void free_run_timer_config_counter(uint32_t us)
{
	/* bit0, timer stop */
	IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) &= ~(1 << 0);
	/*
	 * microseconds to timer counter,
	 * timer 3(TIMER_L) and 4(TIMER_H) combinational mode
	 */
	IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_H) = TIMER_H_US_TO_COUNT(us);
	IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_L) = TIMER_L_US_TO_COUNT(us);
	/* bit[0,1], timer start and reset */
	IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) |= 3;
}

static void free_run_timer_clear_pending_isr(void)
{
	/* w/c interrupt status */
	task_clear_pending_irq(et_ctrl_regs[FREE_EXT_TIMER_L].irq);
	task_clear_pending_irq(et_ctrl_regs[FREE_EXT_TIMER_H].irq);
}

static void free_run_timer_overflow(void)
{
	/*
	 * If timer counter 4(TIMER_H) + timer counter 3(TIMER_L)
	 * != 0x000007fffffff8.
	 * This usually happens once after sysjump, force time, and etc.
	 * (when __hw_clock_source_set is called and param 'ts' != 0)
	 */
	if ((IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_H) != TIMER_H_CNT_COMP) ||
		(IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_L) != TIMER_L_CNT_COMP))
		free_run_timer_config_counter(0xffffffff);

	/* w/c interrupt status */
	free_run_timer_clear_pending_isr();
	/* timer overflow */
	process_timers(1);
	update_exc_start_time();
}

static void event_timer_clear_pending_isr(void)
{
	/* w/c interrupt status */
	task_clear_pending_irq(et_ctrl_regs[EVENT_EXT_TIMER].irq);
}

uint32_t __hw_clock_source_read(void)
{
	uint32_t l_cnt, h_cnt;

	/*
	 * get timer counter observation value, timer 3(TIMER_L) and 4(TIMER_H)
	 * combinational mode.
	 */
	h_cnt = IT83XX_ETWD_ETXCNTOR(FREE_EXT_TIMER_H);
	l_cnt = IT83XX_ETWD_ETXCNTOR(FREE_EXT_TIMER_L);
	/* timer 3(TIMER_L) overflow, get counter observation value again */
	if (h_cnt != IT83XX_ETWD_ETXCNTOR(FREE_EXT_TIMER_H)) {
		h_cnt = IT83XX_ETWD_ETXCNTOR(FREE_EXT_TIMER_H);
		l_cnt = IT83XX_ETWD_ETXCNTOR(FREE_EXT_TIMER_L);
	}

	/* timer counter observation value to microseconds */
	return 0xffffffff - (TIMER_L_COUNT_TO_US(l_cnt) |
			TIMER_H_COUNT_TO_US(h_cnt));
}

void __hw_clock_source_set(uint32_t ts)
{
	uint32_t start_us;

	/* counting down timer */
	start_us = 0xffffffff - ts;

	/* timer 3(TIMER_L) and timer 4(TIMER_H) are not enabled */
	if ((IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) & 0x09) != 0x09) {
		/* bit3, timer 3 and timer 4 combinational mode */
		IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) |= (1 << 3);
		/* microseconds to timer counter, clock source is 8mhz */
		ext_timer_ms(FREE_EXT_TIMER_H, EXT_PSR_8M_HZ, 0, 1,
			TIMER_H_US_TO_COUNT(start_us), 1, 1);
		ext_timer_ms(FREE_EXT_TIMER_L, EXT_PSR_8M_HZ, 1, 1,
			TIMER_L_US_TO_COUNT(start_us), 1, 1);
	} else {
		/* set timer counter only */
		free_run_timer_config_counter(start_us);
		free_run_timer_clear_pending_isr();
		task_enable_irq(et_ctrl_regs[FREE_EXT_TIMER_H].irq);
		task_enable_irq(et_ctrl_regs[FREE_EXT_TIMER_L].irq);
	}
}

void __hw_clock_event_set(uint32_t deadline)
{
	uint32_t wait;
	/* bit0, disable event timer */
	IT83XX_ETWD_ETXCTRL(EVENT_EXT_TIMER) &= ~(1 << 0);
	/* w/c interrupt status */
	event_timer_clear_pending_isr();
	/* microseconds to timer counter */
	wait = deadline - __hw_clock_source_read();
	IT83XX_ETWD_ETXCNTLR(EVENT_EXT_TIMER) =
		wait < EVENT_TIMER_COUNT_TO_US(0xffffffff) ?
		EVENT_TIMER_US_TO_COUNT(wait) : 0xffffffff;
	/* enable and re-start timer */
	IT83XX_ETWD_ETXCTRL(EVENT_EXT_TIMER) |= 0x03;
	task_enable_irq(et_ctrl_regs[EVENT_EXT_TIMER].irq);
}

uint32_t __hw_clock_event_get(void)
{
	uint32_t next_event_us = __hw_clock_source_read();

	/* bit0, event timer is enabled */
	if (IT83XX_ETWD_ETXCTRL(EVENT_EXT_TIMER) & (1 << 0)) {
		/* timer counter observation value to microseconds */
		next_event_us += EVENT_TIMER_COUNT_TO_US(
			IT83XX_ETWD_ETXCNTOR(EVENT_EXT_TIMER));
	}
	return next_event_us;
}

void __hw_clock_event_clear(void)
{
	/* stop event timer */
	ext_timer_stop(EVENT_EXT_TIMER, 1);
	event_timer_clear_pending_isr();
}

int __hw_clock_source_init(uint32_t start_t)
{
	/* enable free running timer */
	__hw_clock_source_set(start_t);
	/* init event timer */
	ext_timer_ms(EVENT_EXT_TIMER, EXT_PSR_8M_HZ, 0, 0, 0xffffffff, 1, 1);
	/* returns the IRQ number of event timer */
	return et_ctrl_regs[EVENT_EXT_TIMER].irq;
}

static void __hw_clock_source_irq(void)
{
	/* Determine interrupt number. */
	int irq = IT83XX_INTC_IVCT3 - 16;

	/* SW/HW interrupt of event timer. */
	if ((get_sw_int() == et_ctrl_regs[EVENT_EXT_TIMER].irq) ||
		(irq == et_ctrl_regs[EVENT_EXT_TIMER].irq)) {
		IT83XX_ETWD_ETXCNTLR(EVENT_EXT_TIMER) = 0xffffffff;
		IT83XX_ETWD_ETXCTRL(EVENT_EXT_TIMER) |= (1 << 1);
		event_timer_clear_pending_isr();
		process_timers(0);
		return;
	}

#ifdef CONFIG_WATCHDOG
	/*
	 * Both the external timer for the watchdog warning and the HW timer
	 * go through this irq. So, if this interrupt was caused by watchdog
	 * warning timer, then call that function.
	 */
	if (irq == et_ctrl_regs[WDT_EXT_TIMER].irq) {
		watchdog_warning_irq();
		return;
	}
#endif

#ifdef CONFIG_FANS
	if (irq == et_ctrl_regs[FAN_CTRL_EXT_TIMER].irq) {
		fan_ext_timer_interrupt();
		return;
	}
#endif

	/* Interrupt of free running timer TIMER_L. */
	if (irq == et_ctrl_regs[FREE_EXT_TIMER_L].irq) {
		/* w/c interrupt status */
		task_clear_pending_irq(et_ctrl_regs[FREE_EXT_TIMER_L].irq);
		/* disable timer 3(TIMER_L) interrupt */
		task_disable_irq(et_ctrl_regs[FREE_EXT_TIMER_L].irq);
		/* No need to set timer counter */
		if (IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_L) == TIMER_L_CNT_COMP)
			return;
		/*
		 * If timer counter 3(TIMER_L) != 0xfffff8.
		 * This usually happens once after sysjump, force time, and etc.
		 * (when __hw_clock_source_set is called and param 'ts' != 0)
		 *
		 * The interrupt is used to make sure the counter of
		 * timer 3(TIMER_L) is
		 * 0xfffff8(TIMER_L_COUNT_TO_US(0xffffffff)).
		 */
		if (IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_H)) {
			/* bit0, timer stop */
			IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) &= ~(1 << 0);
			IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_L) =
				TIMER_L_US_TO_COUNT(0xffffffff);
			IT83XX_ETWD_ETXCNTLR(FREE_EXT_TIMER_H) -= 1;
			/* bit[0,1], timer start and reset */
			IT83XX_ETWD_ETXCTRL(FREE_EXT_TIMER_L) |= 3;
			update_exc_start_time();
		} else {
			free_run_timer_overflow();
		}
		return;
	}

	/* Interrupt of free running timer TIMER_H. */
	if (irq == et_ctrl_regs[FREE_EXT_TIMER_H].irq) {
		free_run_timer_overflow();
		return;
	}
}
DECLARE_IRQ(CPU_INT_GROUP_3, __hw_clock_source_irq, 1);

void ext_timer_start(enum ext_timer_sel ext_timer, int en_irq)
{
	/* enable external timer n */
	IT83XX_ETWD_ETXCTRL(ext_timer) |= 0x03;

	if (en_irq) {
		task_clear_pending_irq(et_ctrl_regs[ext_timer].irq);
		task_enable_irq(et_ctrl_regs[ext_timer].irq);
	}
}

void ext_timer_stop(enum ext_timer_sel ext_timer, int dis_irq)
{
	/* disable external timer n */
	IT83XX_ETWD_ETXCTRL(ext_timer) &= ~0x01;

	if (dis_irq)
		task_disable_irq(et_ctrl_regs[ext_timer].irq);
}

static void ext_timer_ctrl(enum ext_timer_sel ext_timer,
		enum ext_timer_clock_source ext_timer_clock,
		int start,
		int with_int,
		int32_t count)
{
	uint8_t intc_mask;

	/* rising-edge-triggered */
	intc_mask = et_ctrl_regs[ext_timer].mask;
	*et_ctrl_regs[ext_timer].mode |= intc_mask;
	*et_ctrl_regs[ext_timer].polarity &= ~intc_mask;

	/* clear interrupt status */
	task_clear_pending_irq(et_ctrl_regs[ext_timer].irq);

	/* These bits control the clock input source to the exttimer 3 - 8 */
	IT83XX_ETWD_ETXPSR(ext_timer) = ext_timer_clock;

	/* The count number of external timer n. */
	IT83XX_ETWD_ETXCNTLR(ext_timer) = count;

	ext_timer_stop(ext_timer, 0);
	if (start)
		ext_timer_start(ext_timer, 0);

	if (with_int)
		task_enable_irq(et_ctrl_regs[ext_timer].irq);
	else
		task_disable_irq(et_ctrl_regs[ext_timer].irq);
}

int ext_timer_ms(enum ext_timer_sel ext_timer,
		enum ext_timer_clock_source ext_timer_clock,
		int start,
		int with_int,
		int32_t ms,
		int first_time_enable,
		int raw)
{
	uint32_t count;

	if (raw) {
		count = ms;
	} else {
		if (ext_timer_clock == EXT_PSR_32P768K_HZ)
			count = MS_TO_COUNT(32768, ms);
		else if (ext_timer_clock == EXT_PSR_1P024K_HZ)
			count = MS_TO_COUNT(1024, ms);
		else if (ext_timer_clock == EXT_PSR_32_HZ)
			count = MS_TO_COUNT(32, ms);
		else if (ext_timer_clock == EXT_PSR_8M_HZ)
			count = 8000 * ms;
		else
			return -1;
	}

	if (count == 0)
		return -3;

	if (first_time_enable) {
		ext_timer_start(ext_timer, 0);
		ext_timer_stop(ext_timer, 0);
	}

	ext_timer_ctrl(ext_timer, ext_timer_clock, start, with_int, count);

	return 0;
}