summaryrefslogtreecommitdiff
path: root/chip/lm4/system.c
blob: 9fa2d47de54c5e75b49589fa2ca7f7e3c396ff73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* System module for Chrome EC : LM4 hardware specific implementation */

#include "common.h"
#include "cpu.h"
#include "registers.h"
#include "system.h"
#include "task.h"

/* Indices for hibernate data registers */
enum hibdata_index {
	HIBDATA_INDEX_SCRATCHPAD,  /* General-purpose scratchpad */
};

static int wait_for_hibctl_wc(void)
{
	int i;
	/* Wait for write-capable */
	for (i = 0; i < 1000000; i++) {
		if (LM4_HIBERNATE_HIBCTL & 0x80000000)
			return EC_SUCCESS;
	}
	return EC_ERROR_UNKNOWN;
}

/**
 * Read hibernate register at specified index.
 *
 * @return The value of the register or 0 if invalid index.
 */
static uint32_t hibdata_read(enum hibdata_index index)
{
	if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
		return 0;

	return LM4_HIBERNATE_HIBDATA[index];
}

/**
 * Write hibernate register at specified index.
 *
 * @return nonzero if error.
 */
static int hibdata_write(enum hibdata_index index, uint32_t value)
{
	int rv;

	if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
		return EC_ERROR_INVAL;

	/* Wait for ok-to-write */
	rv = wait_for_hibctl_wc();
	if (rv != EC_SUCCESS)
		return rv;

	/* Write register */
	LM4_HIBERNATE_HIBDATA[index] = value;

	/* Wait for write-complete */
	return wait_for_hibctl_wc();
}

static void check_reset_cause(void)
{
	uint32_t hib_status = LM4_HIBERNATE_HIBRIS;
	enum system_reset_cause_t reset_cause = SYSTEM_RESET_UNKNOWN;
	uint32_t raw_reset_cause;

	/* Read and clear the raw reset cause */
	raw_reset_cause = LM4_SYSTEM_RESC;
	LM4_SYSTEM_RESC = 0;

	if (hib_status & 0x0d) {
		/* The hibernation module woke up the system */
		if (hib_status & 0x8)
			reset_cause = SYSTEM_RESET_WAKE_PIN;
		else if (hib_status & 0x1)
			/* Note that system_reset(1) also triggers this reset
			 * cause, because it uses hibernate with a RTC wake to
			 * trigger a power-on reset. */
			reset_cause = SYSTEM_RESET_RTC_ALARM;
		else if (hib_status & 0x4)
			reset_cause = SYSTEM_RESET_LOW_BATTERY;
		/* Clear the pending interrupt */
		wait_for_hibctl_wc();
		LM4_HIBERNATE_HIBIC = hib_status;
	} else if (raw_reset_cause & 0x28) {
		/* Watchdog timer 0 or 1 */
		reset_cause = SYSTEM_RESET_WATCHDOG;
	} else if (raw_reset_cause & 0x10) {
		reset_cause = SYSTEM_RESET_SOFT;
	} else if (raw_reset_cause & 0x04) {
		reset_cause = SYSTEM_RESET_BROWNOUT;
	} else if (raw_reset_cause & 0x02) {
		reset_cause = SYSTEM_RESET_POWER_ON;
	} else if (raw_reset_cause & 0x01) {
		reset_cause = SYSTEM_RESET_RESET_PIN;
	} else if (raw_reset_cause) {
		reset_cause = SYSTEM_RESET_OTHER;
	}
	system_set_reset_cause(reset_cause);
}

/*
 * A3 and earlier chip stepping has a problem accessing flash during shutdown.
 * To work around that, we jump to RAM before hibernating.  This function must
 * live in RAM.  It must be called with interrupts disabled, cannot call other
 * functions, and can't be declared static (or else the compiler optimizes it
 * into the main hibernate function.
 */
void  __attribute__((section(".iram.text"))) __enter_hibernate(int hibctl)
{
	LM4_HIBERNATE_HIBCTL = hibctl;
	while (1)
		;
}

void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
	/* Clear pending interrupt */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBIC = LM4_HIBERNATE_HIBRIS;

	/* Set RTC alarm match */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCM0 = seconds;
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCSS = (microseconds * 512 / 15625) << 16;

	/* Start counting toward the alarm */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCLD = 0;

	/* Go to hibernation and wake on RTC match or WAKE pin */
	wait_for_hibctl_wc();
	__enter_hibernate(0x5B);
}

int system_pre_init(void)
{
	volatile uint32_t scratch  __attribute__((unused));

	/* Enable clocks to the hibernation module */
	LM4_SYSTEM_RCGCHIB = 1;
	/* Wait 3 clock cycles before using the module */
	scratch = LM4_SYSTEM_RCGCHIB;

	/*
	 * Enable the hibernation oscillator, if it's not already enabled.  We
	 * use this to hold our scratchpad value across reboots.
	 */
	if (!(LM4_HIBERNATE_HIBCTL & 0x40)) {
		int rv, i;
		rv = wait_for_hibctl_wc();
		if (rv != EC_SUCCESS)
			return rv;

		/* Enable clock to hibernate module */
		LM4_HIBERNATE_HIBCTL |= 0x40;
		/* Wait for write-complete */
		for (i = 0; i < 1000000; i++) {
			if (LM4_HIBERNATE_HIBRIS & 0x10)
				break;
		}
	}

	/*
	 * Initialize registers after reset to work around LM4 chip errata
	 * (still present in A3 chip stepping).
	 */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCT = 0x7fff;
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBIM = 0;

	check_reset_cause();

	/* Initialize bootcfg if needed */
	if (LM4_SYSTEM_BOOTCFG != BOOTCFG_VALUE) {
		LM4_FLASH_FMD = BOOTCFG_VALUE;
		LM4_FLASH_FMA = 0x75100000;
		LM4_FLASH_FMC = 0xa4420008;  /* WRKEY | COMT */
		while (LM4_FLASH_FMC & 0x08)
			;
	}

	/* Brown-outs should trigger a reset */
	LM4_SYSTEM_PBORCTL |= 0x02;

	return EC_SUCCESS;
}

void system_reset(int is_hard)
{
	/* Disable interrupts to avoid task swaps during reboot */
	interrupt_disable();

	if (is_hard) {
		/* Bounce through hibernate to trigger a hard reboot */
		system_hibernate(0, 50000);
	} else {
		/* Soft reboot */
		CPU_NVIC_APINT = 0x05fa0004;
	}

	/* Spin and wait for reboot; should never return */
	while (1)
		;
}

int system_set_scratchpad(uint32_t value)
{
	return hibdata_write(HIBDATA_INDEX_SCRATCHPAD, value);
}

uint32_t system_get_scratchpad(void)
{
	return hibdata_read(HIBDATA_INDEX_SCRATCHPAD);
}

const char *system_get_chip_vendor(void)
{
	return "ti";
}

const char *system_get_chip_name(void)
{
	if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e20000) {
		return "lm4fsxhh5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e30000) {
		return "lm4fs232h5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e40000) {
		return "lm4fs99h5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e60000) {
		return "lm4fs1ah5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10ea0000) {
		return "lm4fs1gh5bb";
	} else {
		return "";
	}
}

const char *system_get_chip_revision(void)
{
	static char rev[3];

	/* Extract the major[15:8] and minor[7:0] revisions. */
	rev[0] = 'A' + ((LM4_SYSTEM_DID0 >> 8) & 0xff);
	rev[1] = '0' + (LM4_SYSTEM_DID0 & 0xff);
	rev[2] = 0;

	return rev;
}