summaryrefslogtreecommitdiff
path: root/chip/lm4/system.c
blob: 33bfd0227cd7395009852c46a1d360e2c8e68dfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* System module for Chrome EC : LM4 hardware specific implementation */

#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "host_command.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "util.h"

/* Indices for hibernate data registers */
enum hibdata_index {
	HIBDATA_INDEX_SCRATCHPAD,        /* General-purpose scratchpad */
	HIBDATA_INDEX_WAKE,              /* Wake reasons for hibernate */
	HIBDATA_INDEX_SAVED_RESET_FLAGS  /* Saved reset flags */
};

/* Flags for HIBDATA_INDEX_WAKE */
#define HIBDATA_WAKE_RTC        (1 << 0)  /* RTC alarm */
#define HIBDATA_WAKE_HARD_RESET (1 << 1)  /* Hard reset via short RTC alarm */
#define HIBDATA_WAKE_PIN        (1 << 2)  /* Wake pin */

/*
 * Time it takes wait_for_hibctl_wc() to return.  Experimentally verified to
 * be ~200 us; the value below is somewhat conservative.
 */
#define HIB_WAIT_USEC 1000

/*
 * Time to hibernate to trigger a power-on reset.  50 ms is sufficient for the
 * EC itself, but we need a longer delay to ensure the rest of the components
 * on the same power rail are reset and 5VALW has dropped.
 */
#define HIB_RESET_USEC 1000000

/**
 * Wait for a write to commit to a hibernate register.
 *
 * @return EC_SUCCESS if successful, non-zero if error.
 */
static int wait_for_hibctl_wc(void)
{
	int i;

	/* Wait for write-capable */
	for (i = 0; i < 1000000; i++) {
		if (LM4_HIBERNATE_HIBCTL & LM4_HIBCTL_WRC)
			return EC_SUCCESS;
	}
	return EC_ERROR_TIMEOUT;
}

/**
 * Read hibernate register at specified index.
 *
 * @return The value of the register or 0 if invalid index.
 */
static uint32_t hibdata_read(enum hibdata_index index)
{
	if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
		return 0;

	return LM4_HIBERNATE_HIBDATA[index];
}

/**
 * Write hibernate register at specified index.
 *
 * @return nonzero if error.
 */
static int hibdata_write(enum hibdata_index index, uint32_t value)
{
	int rv;

	if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
		return EC_ERROR_INVAL;

	/* Wait for ok-to-write */
	rv = wait_for_hibctl_wc();
	if (rv != EC_SUCCESS)
		return rv;

	/* Write register */
	LM4_HIBERNATE_HIBDATA[index] = value;

	/* Wait for write-complete */
	return wait_for_hibctl_wc();
}

static void check_reset_cause(void)
{
	uint32_t hib_status = LM4_HIBERNATE_HIBRIS;
	uint32_t raw_reset_cause = LM4_SYSTEM_RESC;
	uint32_t hib_wake_flags = hibdata_read(HIBDATA_INDEX_WAKE);
	uint32_t flags = 0;

	/* Clear the reset causes now that we've read them */
	LM4_SYSTEM_RESC = 0;
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBIC = hib_status;
	hibdata_write(HIBDATA_INDEX_WAKE, 0);

	if (raw_reset_cause & 0x02) {
		/*
		 * Full power-on reset of chip.  This resets the flash
		 * protection registers to their permanently-stored values.
		 * Note that this is also triggered by hibernation, because
		 * that de-powers the chip.
		 */
		flags |= RESET_FLAG_POWER_ON;
	} else if (!flags && (raw_reset_cause & 0x01)) {
		/*
		 * LM4 signals the reset pin in RESC for all power-on resets,
		 * even though the external pin wasn't asserted.  Make setting
		 * this flag mutually-exclusive with power on flag, so we can
		 * use it to indicate a keyboard-triggered reset.
		 */
		flags |= RESET_FLAG_RESET_PIN;
	}

	if (raw_reset_cause & 0x04)
		flags |= RESET_FLAG_BROWNOUT;

	if (raw_reset_cause & 0x10)
		flags |= RESET_FLAG_SOFT;

	if (raw_reset_cause & 0x28) {
		/* Watchdog timer 0 or 1 */
		flags |= RESET_FLAG_WATCHDOG;
	}

	/* Handle other raw reset causes */
	if (raw_reset_cause && !flags)
		flags |= RESET_FLAG_OTHER;


	if ((hib_status & 0x09) &&
	    (hib_wake_flags & HIBDATA_WAKE_HARD_RESET)) {
		/* Hibernation caused by software-triggered hard reset */
		flags |= RESET_FLAG_HARD;

		/* Consume the hibernate reasons so we don't see them below */
		hib_status &= ~0x09;
	}

	if ((hib_status & 0x01) && (hib_wake_flags & HIBDATA_WAKE_RTC))
		flags |= RESET_FLAG_RTC_ALARM;

	if ((hib_status & 0x08) && (hib_wake_flags & HIBDATA_WAKE_PIN))
		flags |= RESET_FLAG_WAKE_PIN;

	if (hib_status & 0x04)
		flags |= RESET_FLAG_LOW_BATTERY;

	/* Restore then clear saved reset flags */
	flags |= hibdata_read(HIBDATA_INDEX_SAVED_RESET_FLAGS);
	hibdata_write(HIBDATA_INDEX_SAVED_RESET_FLAGS, 0);

	system_set_reset_flags(flags);
}

/*
 * A3 and earlier chip stepping has a problem accessing flash during shutdown.
 * To work around that, we jump to RAM before hibernating.  This function must
 * live in RAM.  It must be called with interrupts disabled, cannot call other
 * functions, and can't be declared static (or else the compiler optimizes it
 * into the main hibernate function.
 */
void  __attribute__((section(".iram.text"))) __enter_hibernate(int hibctl)
{
	LM4_HIBERNATE_HIBCTL = hibctl;
	while (1)
		;
}

/**
 * Read the real-time clock.
 *
 * @param ss_ptr       Destination for sub-seconds value, if not null.
 *
 * @return the real-time clock seconds value.
 */
uint32_t system_get_rtc(uint32_t *ss_ptr)
{
	uint32_t rtc, rtc2;
	uint32_t rtcss, rtcss2;

	/*
	 * The hibernate module isn't synchronized, so need to read repeatedly
	 * to guarantee a valid read.
	 */
	do {
		rtc = LM4_HIBERNATE_HIBRTCC;
		rtcss = LM4_HIBERNATE_HIBRTCSS & 0x7fff;
		rtcss2 = LM4_HIBERNATE_HIBRTCSS & 0x7fff;
		rtc2 = LM4_HIBERNATE_HIBRTCC;
	} while (rtc != rtc2 || rtcss != rtcss2);

	if (ss_ptr)
		*ss_ptr = rtcss;

	return rtc;
}

/**
 * Set the real-time clock.
 *
 * @param seconds	New clock value.
 */
void system_set_rtc(uint32_t seconds)
{
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCLD = seconds;
	wait_for_hibctl_wc();
}

/**
 * Internal hibernate function.
 *
 * @param seconds      Number of seconds to sleep before RTC alarm
 * @param microseconds Number of microseconds to sleep before RTC alarm
 * @param flags        Additional hibernate wake flags
 */
static void hibernate(uint32_t seconds, uint32_t microseconds, uint32_t flags)
{
	uint32_t rtc, rtcss;
	uint32_t hibctl;

	/* Set up wake reasons and hibernate flags */
	hibctl = LM4_HIBERNATE_HIBCTL | LM4_HIBCTL_PINWEN;

	if (flags & HIBDATA_WAKE_PIN)
		hibctl |= LM4_HIBCTL_PINWEN;
	else
		hibctl &= ~LM4_HIBCTL_PINWEN;

	if (seconds || microseconds) {
		hibctl |= LM4_HIBCTL_RTCWEN;
		flags |= HIBDATA_WAKE_RTC;
	} else {
		hibctl &= ~LM4_HIBCTL_RTCWEN;
	}
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBCTL = hibctl;

	/* Store hibernate flags */
	hibdata_write(HIBDATA_INDEX_WAKE, flags);

	/* Clear pending interrupt */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBIC = LM4_HIBERNATE_HIBRIS;

	/* Add expected overhead for hibernate register writes */
	microseconds += HIB_WAIT_USEC * 4;

	/*
	 * The code below must run uninterrupted to make sure we accurately
	 * calculate the RTC match value.
	 */
	interrupt_disable();

	/*
	 * Calculate the wake match, compensating for additional delays caused
	 * by writing to the hibernate register.
	 */
	rtc = system_get_rtc(&rtcss) + seconds;
	rtcss += microseconds * (32768/64) / (1000000/64);
	if (rtcss > 0x7fff) {
		rtc += rtcss >> 15;
		rtcss &= 0x7fff;
	}

	/* Set RTC alarm match */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCM0 = rtc;
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCSS = rtcss << 16;

	wait_for_hibctl_wc();
	__enter_hibernate(hibctl | LM4_HIBCTL_HIBREQ);
}

void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
	/* Flush console before hibernating */
	cflush();
	hibernate(seconds, microseconds, HIBDATA_WAKE_PIN);
}

void system_pre_init(void)
{
	/*
	 * Enable clocks to the hibernation module in run, sleep,
	 * and deep sleep modes.
	 */
	clock_enable_peripheral(CGC_OFFSET_HIB, 0x1, CGC_MODE_ALL);

	/*
	 * Enable the hibernation oscillator, if it's not already enabled.
	 * This should only need setting if the EC completely lost power (for
	 * example, the battery was pulled).
	 */
	if (!(LM4_HIBERNATE_HIBCTL & LM4_HIBCTL_CLK32EN)) {
		int i;

		/* Enable clock to hibernate module */
		wait_for_hibctl_wc();
		LM4_HIBERNATE_HIBCTL |= LM4_HIBCTL_CLK32EN;

		/* Wait for write-complete */
		for (i = 0; i < 1000000; i++) {
			if (LM4_HIBERNATE_HIBRIS & 0x10)
				break;
		}

		/* Enable and reset RTC */
		wait_for_hibctl_wc();
		LM4_HIBERNATE_HIBCTL |= LM4_HIBCTL_RTCEN;
		system_set_rtc(0);

		/* Clear all hibernate data entries */
		for (i = 0; i < LM4_HIBERNATE_HIBDATA_ENTRIES; i++)
			hibdata_write(i, 0);
	}

	/*
	 * Initialize registers after reset to work around LM4 chip errata
	 * (still present in A3 chip stepping).
	 */
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBRTCT = 0x7fff;
	wait_for_hibctl_wc();
	LM4_HIBERNATE_HIBIM = 0;

	check_reset_cause();

	/* Initialize bootcfg if needed */
	if (LM4_SYSTEM_BOOTCFG != CONFIG_BOOTCFG_VALUE) {
		/* read-modify-write */
		LM4_FLASH_FMD = (LM4_SYSTEM_BOOTCFG_MASK & LM4_SYSTEM_BOOTCFG)
			| (~LM4_SYSTEM_BOOTCFG_MASK & CONFIG_BOOTCFG_VALUE);
		LM4_FLASH_FMA = 0x75100000;
		LM4_FLASH_FMC = 0xa4420008;  /* WRKEY | COMT */
		while (LM4_FLASH_FMC & 0x08)
			;
	}

	/* Brown-outs should trigger a reset */
	LM4_SYSTEM_PBORCTL |= 0x02;
}

void system_reset(int flags)
{
	uint32_t save_flags = 0;

	/* Disable interrupts to avoid task swaps during reboot */
	interrupt_disable();

	/* Save current reset reasons if necessary */
	if (flags & SYSTEM_RESET_PRESERVE_FLAGS)
		save_flags = system_get_reset_flags() | RESET_FLAG_PRESERVED;

	if (flags & SYSTEM_RESET_LEAVE_AP_OFF)
		save_flags |= RESET_FLAG_AP_OFF;

	hibdata_write(HIBDATA_INDEX_SAVED_RESET_FLAGS, save_flags);

	if (flags & SYSTEM_RESET_HARD) {
		/*
		 * Bounce through hibernate to trigger a hard reboot.  Do
		 * not wake on wake pin, since we need the full duration.
		 */
		hibernate(0, HIB_RESET_USEC, HIBDATA_WAKE_HARD_RESET);
	} else
		CPU_NVIC_APINT = 0x05fa0004;

	/* Spin and wait for reboot; should never return */
	while (1)
		;
}

int system_set_scratchpad(uint32_t value)
{
	return hibdata_write(HIBDATA_INDEX_SCRATCHPAD, value);
}

uint32_t system_get_scratchpad(void)
{
	return hibdata_read(HIBDATA_INDEX_SCRATCHPAD);
}

const char *system_get_chip_vendor(void)
{
	return "ti";
}

static char to_hex(int x)
{
	if (x >= 0 && x <= 9)
		return '0' + x;
	return 'a' + x - 10;
}

const char *system_get_chip_id_string(void)
{
	static char str[15] = "Unknown-";
	char *p = str + 8;
	uint32_t did = LM4_SYSTEM_DID1 >> 16;

	if (*p)
		return (const char *)str;

	*p = to_hex(did >> 12);
	*(p + 1) = to_hex((did >> 8) & 0xf);
	*(p + 2) = to_hex((did >> 4) & 0xf);
	*(p + 3) = to_hex(did & 0xf);
	*(p + 4) = '\0';

	return (const char *)str;
}

const char *system_get_raw_chip_name(void)
{
	if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e20000) {
		return "lm4fsxhh5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e30000) {
		return "lm4fs232h5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e40000) {
		return "lm4fs99h5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10e60000) {
		return "lm4fs1ah5bb";
	} else if ((LM4_SYSTEM_DID1 & 0xffff0000) == 0x10ea0000) {
		return "lm4fs1gh5bb";
	} else {
		return system_get_chip_id_string();
	}
}

const char *system_get_chip_name(void)
{
	const char *postfix = "-tm"; /* test mode */
	static char str[20];
	const char *raw_chip_name = system_get_raw_chip_name();
	char *p = str;

	if (LM4_TEST_MODE_ENABLED) {
		/* Debug mode is enabled. Postfix chip name. */
		while (*raw_chip_name)
			*(p++) = *(raw_chip_name++);
		while (*postfix)
			*(p++) = *(postfix++);
		*p = '\0';
		return (const char *)str;
	} else {
		return raw_chip_name;
	}
}

int system_get_vbnvcontext(uint8_t *block)
{
	return EC_ERROR_UNIMPLEMENTED;
}

int system_set_vbnvcontext(const uint8_t *block)
{
	return EC_ERROR_UNIMPLEMENTED;
}

const char *system_get_chip_revision(void)
{
	static char rev[3];

	/* Extract the major[15:8] and minor[7:0] revisions. */
	rev[0] = 'A' + ((LM4_SYSTEM_DID0 >> 8) & 0xff);
	rev[1] = '0' + (LM4_SYSTEM_DID0 & 0xff);
	rev[2] = 0;

	return rev;
}

/*****************************************************************************/
/* Console commands */

static int command_system_rtc(int argc, char **argv)
{
	uint32_t rtc;
	uint32_t rtcss;

	if (argc == 3 && !strcasecmp(argv[1], "set")) {
		char *e;
		uint32_t t = strtoi(argv[2], &e, 0);
		if (*e)
			return EC_ERROR_PARAM2;

		system_set_rtc(t);
	} else if (argc > 1) {
		return EC_ERROR_INVAL;
	}

	rtc = system_get_rtc(&rtcss);
	ccprintf("RTC: 0x%08x.%04x (%d.%06d s)\n",
		 rtc, rtcss, rtc, (rtcss * (1000000/64)) / (32768/64));

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc, command_system_rtc,
			"[set <seconds>]",
			"Get/set real-time clock",
			NULL);

/*****************************************************************************/
/* Host commands */

static int system_rtc_get_value(struct host_cmd_handler_args *args)
{
	struct ec_response_rtc *r = args->response;

	r->time = system_get_rtc(NULL);
	args->response_size = sizeof(*r);

	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_VALUE,
		     system_rtc_get_value,
		     EC_VER_MASK(0));

static int system_rtc_set_value(struct host_cmd_handler_args *args)
{
	const struct ec_params_rtc *p = args->params;

	system_set_rtc(p->time);
	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_VALUE,
		     system_rtc_set_value,
		     EC_VER_MASK(0));