summaryrefslogtreecommitdiff
path: root/chip/mchp/adc.c
blob: 4fe1a384c0eaede5bf5c18524cfb8815e79deff3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* Copyright 2017 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "adc.h"
#include "adc_chip.h"
#include "common.h"
#include "console.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "tfdp_chip.h"

/*
 * Conversion on a single channel takes less than 12 ms. Set timeout to
 * 15 ms so that we have a 3-ms margin.
 */
#define ADC_SINGLE_READ_TIME 15000

struct mutex adc_lock;

/*
 * Volatile should not be needed.
 * ADC ISR only reads task_waiting.
 * Two other non-ISR routines only write task_waiting when
 * interrupt is disabled or before starting ADC.
 */
static task_id_t task_waiting;

static int start_single_and_wait(int timeout)
{
	int event;

	task_waiting = task_get_current();

	/* Start conversion */
	MCHP_ADC_CTRL |= 1 << 1;

	/* Wait for interrupt */
	event = task_wait_event(timeout);
	task_waiting = TASK_ID_INVALID;
	return event != TASK_EVENT_TIMER;
}

int adc_read_channel(enum adc_channel ch)
{
	const struct adc_t *adc = adc_channels + ch;
	int value;

	trace1(0, ADC, 0, "adc_read_channel %d", ch);

	mutex_lock(&adc_lock);

	trace1(0, ADC, 0,
	       "adc_read_channel acquired mutex. Physical channel = %d",
	       adc->channel);

	MCHP_ADC_SINGLE = 1 << adc->channel;

	if (start_single_and_wait(ADC_SINGLE_READ_TIME))
		value = MCHP_ADC_READ(adc->channel) * adc->factor_mul /
			adc->factor_div + adc->shift;
	else
		value = ADC_READ_ERROR;

	trace11(0, ADC, 0,
		"adc_read_channel value = 0x%08X. Releasing mutex", value);

	mutex_unlock(&adc_lock);
	return value;
}

int adc_read_all_channels(int *data)
{
	int i;
	int ret = EC_SUCCESS;
	const struct adc_t *adc;

	trace0(0, ADC, 0, "adc_read_all_channels");

	mutex_lock(&adc_lock);

	trace0(0, ADC, 0, "adc_read_all_channels acquired mutex");

	MCHP_ADC_SINGLE = 0;
	for (i = 0; i < ADC_CH_COUNT; ++i)
		MCHP_ADC_SINGLE |= 1 << adc_channels[i].channel;

	if (!start_single_and_wait(ADC_SINGLE_READ_TIME * ADC_CH_COUNT)) {
		ret = EC_ERROR_TIMEOUT;
		goto exit_all_channels;
	}

	for (i = 0; i < ADC_CH_COUNT; ++i) {
		adc = adc_channels + i;
		data[i] = MCHP_ADC_READ(adc->channel) * adc->factor_mul /
			  adc->factor_div + adc->shift;
		trace12(0, ADC, 0, "adc all: data[%d] = 0x%08X", i, data[i]);
	}

exit_all_channels:
	mutex_unlock(&adc_lock);
	trace0(0, ADC, 0, "adc_read_all_channels released mutex");

	return ret;
}

/*
 * Using MEC1701 direct mode interrupts. Do not
 * set Interrupt Aggregator Block Enable bit
 * for GIRQ containing ADC.
 */
static void adc_init(void)
{
	/* clear ADC sleep enable */
	MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_ADC);

	/* Activate ADC module */
	MCHP_ADC_CTRL |= 1 << 0;

	/* Enable interrupt */
	task_waiting = TASK_ID_INVALID;
	MCHP_INT_ENABLE(MCHP_ADC_GIRQ) = MCHP_ADC_GIRQ_SINGLE_BIT;
	task_enable_irq(MCHP_IRQ_ADC_SNGL);
}
DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_INIT_ADC);

void adc_interrupt(void)
{
	/* Clear interrupt status bit */
	MCHP_ADC_CTRL |= 1 << 7;

	MCHP_INT_SOURCE(MCHP_ADC_GIRQ) = MCHP_ADC_GIRQ_SINGLE_BIT;

	if (task_waiting != TASK_ID_INVALID)
		task_wake(task_waiting);
}
DECLARE_IRQ(MCHP_IRQ_ADC_SNGL, adc_interrupt, 2);