summaryrefslogtreecommitdiff
path: root/chip/mchp/qmspi.c
blob: 6979bdae6ac6add076d0d4c6b1129c06f1bb60ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/* Copyright 2017 The ChromiumOS Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* QMSPI master module for MCHP MEC family */

#include "common.h"
#include "console.h"
#include "dma.h"
#include "gpio.h"
#include "registers.h"
#include "spi.h"
#include "timer.h"
#include "util.h"
#include "hooks.h"
#include "task.h"
#include "dma_chip.h"
#include "spi_chip.h"
#include "qmspi_chip.h"
#include "tfdp_chip.h"

#define CPUTS(outstr) cputs(CC_SPI, outstr)
#define CPRINTS(format, args...) cprints(CC_SPI, format, ##args)

#define QMSPI_TRANSFER_TIMEOUT (100 * MSEC)
#define QMSPI_BYTE_TRANSFER_TIMEOUT_US (3 * MSEC)
#define QMSPI_BYTE_TRANSFER_POLL_INTERVAL_US 20

#ifndef CONFIG_MCHP_QMSPI_TX_DMA
#ifdef LFW
/*
 * MCHP 32-bit timer 0 configured for 1us count down mode and no
 * interrupt in the LFW environment. Don't need to sleep CPU in LFW.
 */
static int qmspi_wait(uint32_t mask, uint32_t mval)
{
	uint32_t t1, t2, td;

	t1 = MCHP_TMR32_CNT(0);

	while ((MCHP_QMSPI0_STS & mask) != mval) {
		t2 = MCHP_TMR32_CNT(0);
		if (t1 >= t2)
			td = t1 - t2;
		else
			td = t1 + (0xfffffffful - t2);
		if (td > QMSPI_BYTE_TRANSFER_TIMEOUT_US)
			return EC_ERROR_TIMEOUT;
	}
	return EC_SUCCESS;
}
#else
/*
 * This version uses the full EC_RO/RW timer infrastructure and it needs
 * a timer ISR to handle timer underflow. Without the ISR we observe false
 * timeouts when debugging with JTAG.
 * QMSPI_BYTE_TRANSFER_TIMEOUT_US currently 3ms
 * QMSPI_BYTE_TRANSFER_POLL_INTERVAL_US currently 100 us
 */

static int qmspi_wait(uint32_t mask, uint32_t mval)
{
	timestamp_t deadline;

	deadline.val = get_time().val + (QMSPI_BYTE_TRANSFER_TIMEOUT_US);

	while ((MCHP_QMSPI0_STS & mask) != mval) {
		if (timestamp_expired(deadline, NULL))
			return EC_ERROR_TIMEOUT;

		usleep(QMSPI_BYTE_TRANSFER_POLL_INTERVAL_US);
	}
	return EC_SUCCESS;
}
#endif /* #ifdef LFW */
#endif /* #ifndef CONFIG_MCHP_QMSPI_TX_DMA */

/*
 * Wait for QMSPI read using DMA to finish.
 * DMA subsystem has 100 ms timeout
 */
int qmspi_transaction_wait(const struct spi_device_t *spi_device)
{
	const struct dma_option *opdma;

	opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_RD);
	if (opdma != NULL)
		return dma_wait(opdma->channel);

	return EC_ERROR_INVAL;
}

/*
 * Create QMSPI transmit data descriptor not using DMA.
 * Transmit on MOSI pin (single/full-duplex) from TX FIFO.
 * TX FIFO filled by CPU.
 * Caller will apply close and last flags if applicable.
 */
#ifndef CONFIG_MCHP_QMSPI_TX_DMA
static uint32_t qmspi_build_tx_descr(uint32_t ntx, uint32_t ndid)
{
	uint32_t d;

	d = MCHP_QMSPI_C_1X + MCHP_QMSPI_C_TX_DATA;
	d |= ((ndid & 0x0F) << MCHP_QMSPI_C_NEXT_DESCR_BITPOS);

	if (ntx <= MCHP_QMSPI_C_MAX_UNITS)
		d |= MCHP_QMSPI_C_XFRU_1B;
	else {
		if ((ntx & 0x0f) == 0) {
			ntx >>= 4;
			d |= MCHP_QMSPI_C_XFRU_16B;
		} else if ((ntx & 0x03) == 0) {
			ntx >>= 2;
			d |= MCHP_QMSPI_C_XFRU_4B;
		} else
			d |= MCHP_QMSPI_C_XFRU_1B;

		if (ntx > MCHP_QMSPI_C_MAX_UNITS)
			return 0; /* overflow unit count field */
	}

	d |= (ntx << MCHP_QMSPI_C_NUM_UNITS_BITPOS);

	return d;
}

/*
 * Create QMSPI receive data descriptor using DMA.
 * Receive data on MISO pin (single/full-duplex) and store in QMSPI
 * RX FIFO. QMSPI triggers DMA channel to read from RX FIFO and write
 * to memory. Return value is an uint64_t where low 32-bit word is the
 * descriptor and upper 32-bit word is DMA channel unit length with
 * value (1, 2, or 4).
 * Caller will apply close and last flags if applicable.
 */
static uint64_t qmspi_build_rx_descr(uint32_t raddr, uint32_t nrx,
				     uint32_t ndid)
{
	uint32_t d, dmau, na;
	uint64_t u;

	d = MCHP_QMSPI_C_1X + MCHP_QMSPI_C_RX_EN;
	d |= ((ndid & 0x0F) << MCHP_QMSPI_C_NEXT_DESCR_BITPOS);

	dmau = 1;
	na = (raddr | nrx) & 0x03;
	if (na == 0) {
		d |= MCHP_QMSPI_C_RX_DMA_4B;
		dmau <<= 2;
	} else if (na == 0x02) {
		d |= MCHP_QMSPI_C_RX_DMA_2B;
		dmau <<= 1;
	} else {
		d |= MCHP_QMSPI_C_RX_DMA_1B;
	}

	if ((nrx & 0x0f) == 0) {
		nrx >>= 4;
		d |= MCHP_QMSPI_C_XFRU_16B;
	} else if ((nrx & 0x03) == 0) {
		nrx >>= 2;
		d |= MCHP_QMSPI_C_XFRU_4B;
	} else {
		d |= MCHP_QMSPI_C_XFRU_1B;
	}

	u = 0;
	if (nrx <= MCHP_QMSPI_C_MAX_UNITS) {
		d |= (nrx << MCHP_QMSPI_C_NUM_UNITS_BITPOS);
		u = dmau;
		u <<= 32;
		u |= d;
	}

	return u;
}
#endif

#ifdef CONFIG_MCHP_QMSPI_TX_DMA

#define QMSPI_ERR_ANY 0x80
#define QMSPI_ERR_BAD_PTR 0x81
#define QMSPI_ERR_OUT_OF_DESCR 0x85

/*
 * bits[1:0] of word
 * 1 -> 0
 * 2 -> 1
 * 4 -> 2
 */
static uint32_t qmspi_pins_encoding(uint8_t npins)
{
	return (uint32_t)(npins >> 1) & 0x03;
}

/*
 * Clear status, FIFO's, and all descriptors.
 * Enable descriptor mode.
 */
static void qmspi_descr_mode_ready(void)
{
	int i;

	MCHP_QMSPI0_CTRL = 0;
	MCHP_QMSPI0_IEN = 0;
	MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
	MCHP_QMSPI0_STS = 0xfffffffful;
	MCHP_QMSPI0_CTRL = MCHP_QMSPI_C_DESCR_MODE_EN;
	/* clear all descriptors */
	for (i = 0; i < MCHP_QMSPI_MAX_DESCR; i++)
		MCHP_QMSPI0_DESCR(i) = 0;
}

/*
 * helper
 * did = zero based index of start descriptor
 * descr = descriptor configuration
 * nb = number of bytes to transfer
 * Return index of last descriptor allocated or 0xffff
 * if out of descriptors.
 * Algorithm:
 * If requested number of bytes will fit in one descriptor then
 * configure descriptor for QMSPI byte units and return.
 * Otherwise allocate multiple descriptor using QMSPI 16-byte mode
 * and remaining < 16 bytes in byte unit descriptor until all bytes
 * exhausted or out of descriptors error.
 */
static uint32_t qmspi_descr_alloc(uint32_t did, uint32_t descr, uint32_t nb)
{
	uint32_t nu;

	while (nb) {
		if (did >= MCHP_QMSPI_MAX_DESCR)
			return 0xffff;

		descr &=
			~(MCHP_QMSPI_C_NUM_UNITS_MASK + MCHP_QMSPI_C_XFRU_MASK);

		if (nb < (MCHP_QMSPI_C_MAX_UNITS + 1)) {
			descr |= MCHP_QMSPI_C_XFRU_1B;
			descr += (nb << MCHP_QMSPI_C_NUM_UNITS_BITPOS);
			nb = 0;
		} else {
			descr |= MCHP_QMSPI_C_XFRU_16B;
			nu = (nb >> 4) & MCHP_QMSPI_C_NUM_UNITS_MASK0;
			descr += (nu << MCHP_QMSPI_C_NUM_UNITS_BITPOS);
			nb -= (nu << 4);
		}

		descr |= ((did + 1) << MCHP_QMSPI_C_NEXT_DESCR_BITPOS);
		MCHP_QMSPI0_DESCR(did) = descr;
		if (nb)
			did++;
	}

	return did;
}

/*
 * Build one or more descriptors for command/data transmit.
 * cfg b[7:0] = start descriptor index
 * cfg b[15:8] = number of pins for transmit.
 * If bytes to transmit will fit in TX FIFO then fill TX FIFO and build
 * one descriptor.
 * Otherwise build one or more descriptors to fill TX FIFO using DMA
 * channel and configure the DMA channel for memory to device transfer.
 */
static uint32_t qmspi_xmit_data_descr(const struct dma_option *opdma,
				      uint32_t cfg, const uint8_t *data,
				      uint32_t ndata)
{
	uint32_t d, d2, did, dma_cfg;

	did = cfg & 0x0f;
	d = qmspi_pins_encoding((cfg >> 8) & 0x07);

	if (ndata <= MCHP_QMSPI_TX_FIFO_LEN) {
		d2 = d + (ndata << MCHP_QMSPI_C_NUM_UNITS_BITPOS) +
		     MCHP_QMSPI_C_XFRU_1B + MCHP_QMSPI_C_TX_DATA;
		d2 += ((did + 1) << MCHP_QMSPI_C_NEXT_DESCR_BITPOS);
		MCHP_QMSPI0_DESCR(did) = d2;
		while (ndata--)
			MCHP_QMSPI0_TX_FIFO8 = *data++;
	} else { // TX DMA
		if (((uint32_t)data | ndata) & 0x03) {
			dma_cfg = 1;
			d |= (MCHP_QMSPI_C_TX_DATA + MCHP_QMSPI_C_TX_DMA_1B);
		} else {
			dma_cfg = 4;
			d |= (MCHP_QMSPI_C_TX_DATA + MCHP_QMSPI_C_TX_DMA_4B);
		}
		did = qmspi_descr_alloc(did, d, ndata);
		if (did == 0xffff)
			return QMSPI_ERR_OUT_OF_DESCR;

		dma_clr_chan(opdma->channel);
		dma_cfg_buffers(opdma->channel, data, ndata,
				(void *)MCHP_QMSPI0_TX_FIFO_ADDR);
		dma_cfg_xfr(opdma->channel, dma_cfg, MCHP_DMA_QMSPI0_TX_REQ_ID,
			    (DMA_FLAG_M2D + DMA_FLAG_INCR_MEM));
		dma_run(opdma->channel);
	}

	return did;
}

/*
 * QMSPI0 Start
 * flags
 *  b[0] = 1 de-assert chip select when done
 *  b[1] = 1 enable QMSPI interrupts
 *  b[2] = 1 start
 */
void qmspi_cfg_irq_start(uint8_t flags)
{
	MCHP_INT_DISABLE(MCHP_QMSPI_GIRQ) = MCHP_QMSPI_GIRQ_BIT;
	MCHP_INT_SOURCE(MCHP_QMSPI_GIRQ) = MCHP_QMSPI_GIRQ_BIT;
	MCHP_QMSPI0_IEN = 0;

	if (flags & (1u << 1)) {
		MCHP_QMSPI0_IEN =
			(MCHP_QMSPI_STS_DONE + MCHP_QMSPI_STS_PROG_ERR);
		MCHP_INT_ENABLE(MCHP_QMSPI_GIRQ) = MCHP_QMSPI_GIRQ_BIT;
	}

	if (flags & (1u << 2))
		MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_START;
}

/*
 * QMSPI transmit and/or receive
 * np_flags
 *  b[7:0] = flags
 *	b[0] = close(de-assert chip select when done)
 *	b[1] = enable Done and ProgError interrupt
 *	b[2] = start
 *  b[15:8] = number of tx pins
 *  b[24:16] = number of rx pins
 *
 * returns last descriptor 0 <= index < MCHP_QMSPI_MAX_DESCR
 * or error (bit[7]==1)
 */
uint8_t qmspi_xfr(const struct spi_device_t *spi_device, uint32_t np_flags,
		  const uint8_t *txdata, uint32_t ntx, uint8_t *rxdata,
		  uint32_t nrx)
{
	uint32_t d, did, dma_cfg;
	const struct dma_option *opdma;

	qmspi_descr_mode_ready();

	did = 0;
	if (ntx) {
		if (txdata == NULL)
			return QMSPI_ERR_BAD_PTR;

		opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_WR);

		d = qmspi_pins_encoding((np_flags >> 8) & 0xff);
		dma_cfg = (np_flags & 0xFF00) + did;
		did = qmspi_xmit_data_descr(opdma, dma_cfg, txdata, ntx);
		if (did & QMSPI_ERR_ANY)
			return (uint8_t)(did & 0xff);

		if (nrx)
			did++; /* point to next descriptor */
	}

	if (nrx) {
		if (rxdata == NULL)
			return QMSPI_ERR_BAD_PTR;

		if (did >= MCHP_QMSPI_MAX_DESCR)
			return QMSPI_ERR_OUT_OF_DESCR;

		d = qmspi_pins_encoding((np_flags >> 16) & 0xff);
		/* compute DMA units: 1 or 4 */
		if (((uint32_t)rxdata | nrx) & 0x03) {
			dma_cfg = 1;
			d |= (MCHP_QMSPI_C_RX_EN + MCHP_QMSPI_C_RX_DMA_1B);
		} else {
			dma_cfg = 4;
			d |= (MCHP_QMSPI_C_RX_EN + MCHP_QMSPI_C_RX_DMA_4B);
		}
		did = qmspi_descr_alloc(did, d, nrx);
		if (did & QMSPI_ERR_ANY)
			return (uint8_t)(did & 0xff);

		opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_RD);
		dma_clr_chan(opdma->channel);
		dma_cfg_buffers(opdma->channel, rxdata, nrx,
				(void *)MCHP_QMSPI0_RX_FIFO_ADDR);
		dma_cfg_xfr(opdma->channel, dma_cfg, MCHP_DMA_QMSPI0_RX_REQ_ID,
			    (DMA_FLAG_D2M + DMA_FLAG_INCR_MEM));
		dma_run(opdma->channel);
	}

	if (ntx || nrx) {
		d = MCHP_QMSPI0_DESCR(did);
		d |= MCHP_QMSPI_C_DESCR_LAST;
		if (np_flags & 0x01)
			d |= MCHP_QMSPI_C_CLOSE;
		MCHP_QMSPI0_DESCR(did) = d;
		qmspi_cfg_irq_start(np_flags & 0xFF);
	}

	return (uint8_t)(did & 0xFF);
}
#endif /* #ifdef CONFIG_MCHP_QMSPI_TX_DMA */

/*
 * QMSPI controller must control chip select therefore this routine
 * configures QMSPI to assert SPI CS# and de-assert when done.
 * Transmit using QMSPI TX FIFO only when tx data fits in TX FIFO else
 * use TX DMA.
 * Transmit and receive will allocate as many QMSPI descriptors as
 * needed for data size. This could result in an error if the maximum
 * number of descriptors is exceeded.
 * Descriptors are limited to 0x7FFF units where unit size is 1, 4, or
 * 16 bytes. Code determines unit size based upon number of bytes and
 * alignment of data buffer.
 * DMA channel will move data in units of 1 or 4 bytes also based upon
 * the number of data bytes and buffer alignment.
 * The most efficient transfers are those where TX and RX buffers are
 * aligned >= 4 bytes and the number of bytes is a multiple of 4.
 * NOTE on SPI flash commands:
 * This routine does NOT handle SPI flash commands requiring
 * extra clocks or special mode bytes. Extra clocks and special mode
 * bytes require additional descriptors. For example the flash read
 * dual command (0x3B):
 * 1. First descriptor transmits 4 bytes (opcode + 24-bit address) on
 *    one pin (IO0).
 * 2. Second descriptor set for 2 IO pins, 2 bytes, TX disabled. When
 *    this descriptor is executed QMSPI will tri-state IO0 & IO1 and
 *    output 8 clocks (dual mode 4 clocks per byte). The SPI flash may
 *    turn on its output drivers on the first clock.
 * 3. Third descriptor set for 2 IO pins, read data using DMA. Unit
 *    size and DMA unit size based on number of bytes to read and
 *    alignment of destination buffer.
 * The common SPI API will be required to supply more information about
 * SPI flash read commands.  A further complication is some larger SPI
 * flash devices support a 4-byte address mode. 4-byte address mode can
 * be implemented as separate command code or a configuration bit in
 * the SPI flash that changes the default 24-bit address command to
 * require a 32-bit address.
 * 0x03 is 1-1-1
 * 0x3B is 1-1-2 with 8 clocks
 * 0x6B is 1-1-4 with 8 clocks
 * 0xBB is 1-2-2 with 4 clocks
 * Number of IO pins for command
 * Number of IO pins for address
 * Number of IO pins for data
 * Number of bit/bytes for address (3 or 4)
 * Number of clocks after address phase
 */
#ifdef CONFIG_MCHP_QMSPI_TX_DMA
int qmspi_transaction_async(const struct spi_device_t *spi_device,
			    const uint8_t *txdata, int txlen, uint8_t *rxdata,
			    int rxlen)
{
	uint32_t np_flags, ntx, nrx;
	int ret;
	uint8_t rc;

	ntx = 0;
	if (txlen >= 0)
		ntx = (uint32_t)txlen;

	nrx = 0;
	if (rxlen >= 0)
		nrx = (uint32_t)rxlen;

	np_flags = 0x010105; /* b[0]=1 close on done, b[2]=1 start */
	rc = qmspi_xfr(spi_device, np_flags, txdata, ntx, rxdata, nrx);

	if (rc & QMSPI_ERR_ANY)
		return EC_ERROR_INVAL;

	ret = EC_SUCCESS;
	return ret;
}
#else
/*
 * Transmit using CPU and QMSPI TX FIFO(no DMA).
 * Receive using DMA as above.
 */
int qmspi_transaction_async(const struct spi_device_t *spi_device,
			    const uint8_t *txdata, int txlen, uint8_t *rxdata,
			    int rxlen)
{
	const struct dma_option *opdma;
	uint32_t d, did, dmau;
	uint64_t u;

	if (spi_device == NULL)
		return EC_ERROR_PARAM1;

	/* soft reset the controller */
	MCHP_QMSPI0_MODE_ACT_SRST = MCHP_QMSPI_M_SOFT_RESET;
	d = spi_device->div;
	d <<= MCHP_QMSPI_M_CLKDIV_BITPOS;
	d += (MCHP_QMSPI_M_ACTIVATE + MCHP_QMSPI_M_SPI_MODE0);
	MCHP_QMSPI0_MODE = d;
	MCHP_QMSPI0_CTRL = MCHP_QMSPI_C_DESCR_MODE_EN;

	d = did = 0;

	if (txlen > 0) {
		if (txdata == NULL)
			return EC_ERROR_PARAM2;

		d = qmspi_build_tx_descr((uint32_t)txlen, 1);
		if (d == 0) /* txlen too large */
			return EC_ERROR_OVERFLOW;

		MCHP_QMSPI0_DESCR(did) = d;
	}

	if (rxlen > 0) {
		if (rxdata == NULL)
			return EC_ERROR_PARAM4;

		u = qmspi_build_rx_descr((uint32_t)rxdata, (uint32_t)rxlen, 2);

		d = (uint32_t)u;
		dmau = u >> 32;

		if (txlen > 0)
			did++;
		MCHP_QMSPI0_DESCR(did) = d;

		opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_RD);
		dma_xfr_start_rx(opdma, dmau, (uint32_t)rxlen, rxdata);
	}

	MCHP_QMSPI0_DESCR(did) |=
		(MCHP_QMSPI_C_CLOSE + MCHP_QMSPI_C_DESCR_LAST);

	MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_START;

	while (txlen--) {
		if (MCHP_QMSPI0_STS & MCHP_QMSPI_STS_TX_BUFF_FULL) {
			if (qmspi_wait(MCHP_QMSPI_STS_TX_BUFF_EMPTY,
				       MCHP_QMSPI_STS_TX_BUFF_EMPTY) !=
			    EC_SUCCESS) {
				MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_STOP;
				return EC_ERROR_TIMEOUT;
			}
		} else
			MCHP_QMSPI0_TX_FIFO8 = *txdata++;
	}

	return EC_SUCCESS;
}
#endif /* #ifdef CONFIG_MCHP_QMSPI_TX_DMA */

/*
 * Wait for QMSPI descriptor mode transfer to finish.
 * QMSPI is configured to perform a complete transaction.
 * Assert CS#
 * optional transmit
 *   CPU keeps filling TX FIFO until all bytes are transmitted.
 * optional receive
 *   QMSPI is configured to read rxlen bytes and uses a DMA channel
 *   to move data from its RX FIFO to memory.
 * De-assert CS#
 * This routine can be called with QMSPI hardware in four states:
 * 1. Transmit only and QMSPI has finished (empty TX FIFO) by the time
 *    this routine is called. QMSPI.Status transfer done status will be
 *    set and QMSPI HW has de-asserted SPI CS#.
 * 2. Transmit only and QMSPI TX FIFO is still transmitting.
 *    QMSPI transfer done status is not asserted and CS# is still
 *    asserted. QMSPI HW will de-assert CS# when done or firmware
 *    manually stops QMSPI.
 * 3. Receive was enabled and DMA channel is moving data from
 *    QMSPI RX FIFO to memory. QMSPI.Status transfer done and DMA done
 *    status bits are not set. QMSPI SPI CS# will stay asserted until
 *    transaction finishes or firmware manually stops QMSPI.
 * 4. Receive was enabled and DMA channel is finished. QMSPI RX FIFO
 *    should be empty and DMA channel is done.  QMSPI.Status transfer
 *    done and DMA done status bits will be set. QMSPI HW has de-asserted
 *    SPI CS#.
 * We are using QMSPI in descriptor mode. The definition of QMSPI.Status
 * transfer complete bit in this mode is: complete will be set to 1 only
 * when the last buffer completes its transfer.
 * TX only sets complete when transfer unit count is matched and all units
 * have been clocked out of the TX FIFO.
 * RX DMA transfer complete will be set when the last transfer unit
 * is out of the RX FIFO but DMA may not be complete until it finishes
 * moving the transfer unit to memory.
 * If TX only spin on QMSPI.Status Transfer_Complete bit.
 * If RX used spin on QMsPI.Status Transfer_Complete and DMA_Complete.
 * Search descriptors looking for RX DMA enabled.
 * If RX DMA is enabled add DMA complete flag to status mask.
 * Spin while QMSPI.Status & mask != mask or timeout.
 * If timeout force QMSPI to stop and exit spin loop.
 * if DMA was enabled disable DMA channel.
 * Clear QMSPI.Status and FIFO's
 */
int qmspi_transaction_flush(const struct spi_device_t *spi_device)
{
	int ret;
	uint32_t qsts, mask;
	const struct dma_option *opdma;
	timestamp_t deadline;

	if (spi_device == NULL)
		return EC_ERROR_PARAM1;

	mask = MCHP_QMSPI_STS_DONE;

	ret = EC_SUCCESS;
	deadline.val = get_time().val + QMSPI_TRANSFER_TIMEOUT;

	qsts = MCHP_QMSPI0_STS;
	while ((qsts & mask) != mask) {
		if (timestamp_expired(deadline, NULL)) {
			MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_STOP;
			ret = EC_ERROR_TIMEOUT;
			break;
		}
		usleep(QMSPI_BYTE_TRANSFER_POLL_INTERVAL_US);
		qsts = MCHP_QMSPI0_STS;
	}

	/* clear transmit DMA channel */
	opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_WR);
	if (opdma == NULL)
		return EC_ERROR_INVAL;

	dma_disable(opdma->channel);
	dma_clear_isr(opdma->channel);

	/* clear receive DMA channel */
	opdma = spi_dma_option(spi_device, SPI_DMA_OPTION_RD);
	if (opdma == NULL)
		return EC_ERROR_INVAL;

	dma_disable(opdma->channel);
	dma_clear_isr(opdma->channel);

	/* clear QMSPI FIFO's */
	MCHP_QMSPI0_EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
	MCHP_QMSPI0_STS = 0xffffffff;

	return ret;
}

/**
 * Enable QMSPI controller and MODULE_SPI_FLASH pins.
 *
 * @param hw_port b[3:0]=0 and b[7:4]=0
 * @param enable
 * @return EC_SUCCESS or EC_ERROR_INVAL if port is unrecognized
 * @note called by spi_enable in mec1701/spi.c
 *
 */
int qmspi_enable(int hw_port, int enable)
{
	uint8_t unused __attribute__((unused)) = 0;

	trace2(0, QMSPI, 0, "qmspi_enable: port = %d enable = %d", hw_port,
	       enable);

	if (hw_port != QMSPI0_PORT)
		return EC_ERROR_INVAL;

	gpio_config_module(MODULE_SPI_FLASH, (enable > 0));

	if (enable) {
		MCHP_PCR_SLP_DIS_DEV(MCHP_PCR_QMSPI);
		MCHP_QMSPI0_MODE_ACT_SRST = MCHP_QMSPI_M_SOFT_RESET;
		unused = MCHP_QMSPI0_MODE_ACT_SRST;
		MCHP_QMSPI0_MODE =
			(MCHP_QMSPI_M_ACTIVATE + MCHP_QMSPI_M_SPI_MODE0 +
			 MCHP_QMSPI_M_CLKDIV_12M);
	} else {
		MCHP_QMSPI0_MODE_ACT_SRST = MCHP_QMSPI_M_SOFT_RESET;
		unused = MCHP_QMSPI0_MODE_ACT_SRST;
		MCHP_QMSPI0_MODE_ACT_SRST = 0;
		MCHP_PCR_SLP_EN_DEV(MCHP_PCR_QMSPI);
	}

	return EC_SUCCESS;
}