summaryrefslogtreecommitdiff
path: root/chip/stm32/clock-stm32h7.c
blob: ba233dbd76ca3e8db0899a4707822eec806b6326 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/* Copyright 2017 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/*
 * Clocks and power management settings
 *
 * Error Handling and Unimplemented Features:
 * Since we are dealing with code critical to the runtime of the CPU,
 * our strategy for unimplemented functionality is to ASSERT, but fallback
 * to doing nothing if ASSERT is not enabled. This is not a perfect solution,
 * but at least yields predictable behavior.
 */


#include <stdbool.h>

#include "chipset.h"
#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "hooks.h"
#include "hwtimer.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "uart.h"
#include "util.h"

/* Check chip family and variant for compatibility */
#ifndef CHIP_FAMILY_STM32H7
#error  Source clock-stm32h7.c does not support this chip family.
#endif
#ifndef CHIP_VARIANT_STM32H7X3
#error Unsupported chip variant.
#endif

/* Console output macros */
#define CPUTS(outstr) cputs(CC_CLOCK, outstr)
#define CPRINTF(format, args...) cprintf(CC_CLOCK, format, ## args)

enum clock_osc {
	OSC_HSI = 0,	/* High-speed internal oscillator */
	OSC_CSI,	/* Multi-speed internal oscillator: NOT IMPLEMENTED */
	OSC_HSE,	/* High-speed external oscillator: NOT IMPLEMENTED */
	OSC_PLL,	/* PLL */
};

enum voltage_scale {
	VOLTAGE_SCALE0 = 0,
	VOLTAGE_SCALE1,
	VOLTAGE_SCALE2,
	VOLTAGE_SCALE3,
	VOLTAGE_SCALE_COUNT,
};

enum freq {
	FREQ_1KHZ   = 1000,
	FREQ_32KHZ  = 32  * FREQ_1KHZ,
	FREQ_1MHZ   = 1000000,
	FREQ_2MHZ   = 2   * FREQ_1MHZ,
	FREQ_16MHZ  = 16  * FREQ_1MHZ,
	FREQ_64MHZ  = 64  * FREQ_1MHZ,
	FREQ_140MHZ = 140 * FREQ_1MHZ,
	FREQ_200MHZ = 200 * FREQ_1MHZ,
	FREQ_280MHZ = 280 * FREQ_1MHZ,
	FREQ_400MHZ = 400 * FREQ_1MHZ,
	FREQ_480MHZ = 480 * FREQ_1MHZ,
};

/* High-speed oscillator default is 64 MHz */
#define STM32_HSI_CLOCK FREQ_64MHZ
/* Low-speed oscillator is 32-Khz */
#define STM32_LSI_CLOCK FREQ_32KHZ

/*
 * LPTIM is a 16-bit counter clocked by LSI
 * with /4 prescaler (2^2): period 125 us, full range ~8s
 */
#define LPTIM_PRESCALER_LOG2 2
/*
 * LPTIM_PRESCALER and LPTIM_PERIOD_US have to be signed, because they
 * determine the signedness of the comparison with |next_delay| in
 * __idle(), where |next_delay| is negative if no next event.
 */
#define LPTIM_PRESCALER ((int)BIT(LPTIM_PRESCALER_LOG2))
#define LPTIM_PERIOD_US (SECOND / (STM32_LSI_CLOCK / LPTIM_PRESCALER))

/* This is not the core frequency */
static enum freq current_bus_freq = STM32_HSI_CLOCK;
static int current_osc = OSC_HSI;

int clock_get_freq(void)
{
	return current_bus_freq;
}

int clock_get_timer_freq(void)
{
	return clock_get_freq();
}

void clock_wait_bus_cycles(enum bus_type bus, uint32_t cycles)
{
	volatile uint32_t unused __attribute__((unused));

	if (bus == BUS_AHB) {
		while (cycles--)
			unused = STM32_GPIO_IDR(GPIO_A);
	} else { /* APB */
		while (cycles--)
			unused = STM32_USART_BRR(STM32_USART1_BASE);
	}
}

/* Flash latency values are dependent on peripheral speed and voltage scale */
static void clock_flash_latency(enum freq axi_freq, enum voltage_scale vos)
{
	uint32_t target_acr;

	if (axi_freq == FREQ_64MHZ && vos == VOLTAGE_SCALE3) {
		target_acr = STM32_FLASH_ACR_WRHIGHFREQ_85MHZ |
			     (0 << STM32_FLASH_ACR_LATENCY_SHIFT);
	} else if (axi_freq == FREQ_200MHZ && vos == VOLTAGE_SCALE1) {
		target_acr = STM32_FLASH_ACR_WRHIGHFREQ_285MHZ |
			     (2 << STM32_FLASH_ACR_LATENCY_SHIFT);
	} else {
		ASSERT(0);
		return;
	}

	STM32_FLASH_ACR(0) = target_acr;
	while (STM32_FLASH_ACR(0) != target_acr)
		;
}

/**
 * @brief Configure PLL1 to output the specified frequency.
 *
 * The input frequency to PLL1 is assumed to be the HSI, which
 * is 64MHz.
 *
 * @param output_freq The target output frequency.
 */
static void clock_pll1_configure(enum freq output_freq) {
	uint32_t divm = 4; // Input prescaler (16MHz max for PLL -- 64/4 ==> 16)
	uint32_t divn;     // Pll multiplier
	uint32_t divp;     // Output 1 prescaler

	switch (output_freq)
	{
	case FREQ_400MHZ:
		/*
		 * PLL1 configuration:
		 * CPU freq = VCO / DIVP = HSI / DIVM * DIVN / DIVP
		 *          = 64MHz/4 * 50 / 2
		 *          = 16MHz * 50 / 2
		 *          = 400 Mhz
		 */
		divn = 50;
		divp = 2;
		break;
	case FREQ_200MHZ:
		/*
		 * PLL1 configuration:
		 * CPU freq = VCO / DIVP = HSI / DIVM * DIVN / DIVP
		 *          = 64 / 4 * 25 / 2
		 *          = 16MHz * 25 / 2
		 *          = 200 Mhz
		 */
		divn = 25;
		divp = 2;
		break;
	case FREQ_280MHZ:
		divn = 35;
		divp = 2;
		break;
	case FREQ_480MHZ:
		divn = 60;
		divp = 2;
		break;
	default:
		ASSERT(0);
		return;
	}

	/*
	 * Using VCO wide-range setting, STM32_RCC_PLLCFG_PLL1VCOSEL_WIDE,
	 * requires input frequency to be between 2MHz and 16MHz.
	 */
	ASSERT(FREQ_2MHZ <= (STM32_HSI_CLOCK/divm));
	ASSERT((STM32_HSI_CLOCK/divm) <= FREQ_16MHZ);

	/*
	 * Ensure that we actually reach the target frequency.
	 */
	ASSERT((STM32_HSI_CLOCK / divm * divn / divp) == output_freq);

	/* Configure PLL1 using 64 Mhz HSI as input */
	STM32_RCC_PLLCKSELR = STM32_RCC_PLLCKSEL_PLLSRC_HSI
			    | STM32_RCC_PLLCKSEL_DIVM1(divm);
	/* in integer mode, wide range VCO with 16Mhz input, use divP */
	STM32_RCC_PLLCFGR = STM32_RCC_PLLCFG_PLL1VCOSEL_WIDE
			  | STM32_RCC_PLLCFG_PLL1RGE_8M_16M
			  | STM32_RCC_PLLCFG_DIVP1EN;
	STM32_RCC_PLL1DIVR = STM32_RCC_PLLDIV_DIVP(divp)
			   | STM32_RCC_PLLDIV_DIVN(divn);
}

/**
 * Configure peripheral domain prescalers to allow a given sysclk frequency.
 *
 * @param sysclk The input system clock, after the system clock prescaler.
 * @return The bus clock speed selected and configured
 */
static enum freq clock_peripheral_configure(enum freq sysclk) {
	switch (sysclk)
	{
	case FREQ_64MHZ:
		/* Restore /1 HPRE (AHB prescaler) */
		/* Disable downstream prescalers */
		STM32_RCC_D1CFGR = STM32_RCC_D1CFGR_HPRE_DIV1
				 | STM32_RCC_D1CFGR_D1PPRE_DIV1
				 | STM32_RCC_D1CFGR_D1CPRE_DIV1;
		/* TODO(b/149512910): Adjust more peripheral prescalers */
		return FREQ_64MHZ;
	case FREQ_400MHZ:
		/* Put /2 on HPRE (AHB prescaler) to keep at the 200MHz max */
		STM32_RCC_D1CFGR = STM32_RCC_D1CFGR_HPRE_DIV2
				 | STM32_RCC_D1CFGR_D1PPRE_DIV1
				 | STM32_RCC_D1CFGR_D1CPRE_DIV1;
		/* TODO(b/149512910): Adjust more peripheral prescalers */
		return FREQ_200MHZ;
	default:
		ASSERT(0);
		return 0;
	}
}

static void clock_enable_osc(enum clock_osc osc, bool enabled)
{
	uint32_t ready;
	uint32_t on;

	switch (osc) {
	case OSC_HSI:
		ready = STM32_RCC_CR_HSIRDY;
		on = STM32_RCC_CR_HSION;
		break;
	case OSC_PLL:
		ready = STM32_RCC_CR_PLL1RDY;
		on = STM32_RCC_CR_PLL1ON;
		break;
	default:
		ASSERT(0);
		return;
	}

	/* Turn off the oscillator, but don't wait for shutdown */
	if (!enabled) {
		STM32_RCC_CR &= ~on;
		return;
	}

	/* Turn on the oscillator if not already on */
	wait_for_ready(&STM32_RCC_CR, on, ready);
}

static void clock_switch_osc(enum clock_osc osc)
{
	uint32_t sw;
	uint32_t sws;

	switch (osc) {
	case OSC_HSI:
		sw = STM32_RCC_CFGR_SW_HSI;
		sws = STM32_RCC_CFGR_SWS_HSI;
		break;
	case OSC_PLL:
		sw = STM32_RCC_CFGR_SW_PLL1;
		sws = STM32_RCC_CFGR_SWS_PLL1;
		break;
	default:
		return;
	}

	STM32_RCC_CFGR = sw;
	while ((STM32_RCC_CFGR & STM32_RCC_CFGR_SWS_MASK) != sws)
		;
}

static void switch_voltage_scale(enum voltage_scale vos)
{
	volatile uint32_t *const vos_reg   = &STM32_PWR_D3CR;
	const uint32_t           vos_ready = STM32_PWR_D3CR_VOSRDY;
	const uint32_t           vos_mask  = STM32_PWR_D3CR_VOSMASK;
	const uint32_t           vos_values[] = {
						/* See note below about VOS0. */
						STM32_PWR_D3CR_VOS1,
						STM32_PWR_D3CR_VOS1,
						STM32_PWR_D3CR_VOS2,
						STM32_PWR_D3CR_VOS3,
						};
	BUILD_ASSERT(ARRAY_SIZE(vos_values) == VOLTAGE_SCALE_COUNT);

	/*
	 * Real VOS0 on the H743 requires entering VOS1 and setting an extra
	 * SYS boost register. We currently do not implement this functionality.
	 */
	if (vos == VOLTAGE_SCALE0) {
		ASSERT(0);
		return;
	}

	*vos_reg &= ~vos_mask;
	*vos_reg |= vos_values[vos];
	while (!(*vos_reg & vos_ready))
		;
}

static void clock_set_osc(enum clock_osc osc)
{
	enum freq target_sysclk_freq = FREQ_64MHZ;
	enum voltage_scale target_voltage_scale = VOLTAGE_SCALE3;

	if (osc == current_osc)
		return;

	switch (osc) {
	case OSC_HSI:
	case OSC_PLL:
		break;
	default:
		ASSERT(0);
		return;
	}

	hook_notify(HOOK_PRE_FREQ_CHANGE);

	switch (osc) {
	default:
	case OSC_HSI:
		/* Switch to HSI */
		clock_switch_osc(osc);
		current_bus_freq = clock_peripheral_configure(target_sysclk_freq);
		/* Use more optimized flash latency settings for 64-MHz ACLK */
		clock_flash_latency(current_bus_freq, target_voltage_scale);
		/* Turn off the PLL1 to save power */
		clock_enable_osc(OSC_PLL, false);
		switch_voltage_scale(target_voltage_scale);
		break;

	case OSC_PLL:
		/*
		 * PLL1 configuration:
		 * CPU freq = VCO / DIVP = HSI / DIVM * DIVN / DIVP
		 *          = 64 / 4 * 50 / 2
		 *          = 400 Mhz
		 * System clock = 400 Mhz
		 *  HPRE = /2  => AHB/Timer clock = 200 Mhz
		 */
		target_sysclk_freq = FREQ_400MHZ;
		target_voltage_scale = VOLTAGE_SCALE1;

		switch_voltage_scale(target_voltage_scale);
		clock_pll1_configure(target_sysclk_freq);
		/* turn on PLL1 and wait until it's ready */
		clock_enable_osc(OSC_PLL, true);
		current_bus_freq = clock_peripheral_configure(target_sysclk_freq);
		/* Increase flash latency before transition the clock */
		clock_flash_latency(current_bus_freq, target_voltage_scale);

		/* Switch to PLL */
		clock_switch_osc(OSC_PLL);
		break;
	}

	current_osc = osc;
	hook_notify(HOOK_FREQ_CHANGE);
}

void clock_enable_module(enum module_id module, int enable)
{
	/* Assume we have a single task using MODULE_FAST_CPU */
	if (module == MODULE_FAST_CPU) {
		/* the PLL would be off in low power mode, disable it */
		if (enable)
			disable_sleep(SLEEP_MASK_PLL);
		else
			enable_sleep(SLEEP_MASK_PLL);
		clock_set_osc(enable ? OSC_PLL : OSC_HSI);
	}
}

#ifdef CONFIG_LOW_POWER_IDLE
/* Low power idle statistics */
static int idle_sleep_cnt;
static int idle_dsleep_cnt;
static uint64_t idle_dsleep_time_us;
static int dsleep_recovery_margin_us = 1000000;

/* STOP_MODE_LATENCY: delay to wake up from STOP mode with flash off in SVOS5 */
#define STOP_MODE_LATENCY 50 /* us */

static void low_power_init(void)
{
	/* Clock LPTIM1 on the 32-kHz LSI for STOP mode time keeping */
	STM32_RCC_D2CCIP2R = (STM32_RCC_D2CCIP2R &
		~STM32_RCC_D2CCIP2_LPTIM1SEL_MASK)
		| STM32_RCC_D2CCIP2_LPTIM1SEL_LSI;

	/* configure LPTIM1 as our 1-Khz low power timer in STOP mode */
	STM32_RCC_APB1LENR |= STM32_RCC_PB1_LPTIM1;
	STM32_LPTIM_CR(1) = 0; /* ensure it's disabled before configuring */
	STM32_LPTIM_CFGR(1) = LPTIM_PRESCALER_LOG2 << 9; /* Prescaler /4 */
	STM32_LPTIM_IER(1) = STM32_LPTIM_INT_CMPM; /* Compare int for wake-up */
	/* Start the 16-bit free-running counter */
	STM32_LPTIM_CR(1) = STM32_LPTIM_CR_ENABLE;
	STM32_LPTIM_ARR(1) = 0xFFFF;
	STM32_LPTIM_CR(1) = STM32_LPTIM_CR_ENABLE | STM32_LPTIM_CR_CNTSTRT;
	task_enable_irq(STM32_IRQ_LPTIM1);

	/* Wake-up interrupts from EXTI for USART and LPTIM */
	STM32_EXTI_CPUIMR1 |= BIT(26); /* [26] wkup26: USART1 wake-up */
	STM32_EXTI_CPUIMR2 |= BIT(15); /* [15] wkup47: LPTIM1 wake-up */

	/* optimize power vs latency in STOP mode */
	STM32_PWR_CR = (STM32_PWR_CR & ~STM32_PWR_CR_SVOS_MASK)
		     | STM32_PWR_CR_SVOS5
		     | STM32_PWR_CR_FLPS;
}

void clock_refresh_console_in_use(void)
{
}

void lptim_interrupt(void)
{
	STM32_LPTIM_ICR(1) = STM32_LPTIM_INT_CMPM;
}
DECLARE_IRQ(STM32_IRQ_LPTIM1, lptim_interrupt, 2);

static uint16_t lptim_read(void)
{
	uint16_t cnt;

	do {
		cnt = STM32_LPTIM_CNT(1);
	} while (cnt != STM32_LPTIM_CNT(1));

	return cnt;
}

static void set_lptim_event(int delay_us, uint16_t *lptim_cnt)
{
	uint16_t cnt = lptim_read();

	STM32_LPTIM_CMP(1) = cnt + MIN(delay_us / LPTIM_PERIOD_US - 1, 0xffff);
	/* clean-up previous event */
	STM32_LPTIM_ICR(1) = STM32_LPTIM_INT_CMPM;
	*lptim_cnt = cnt;
}

void __idle(void)
{
	timestamp_t t0;
	int next_delay;
	int margin_us, t_diff;
	uint16_t lptim0;

	while (1) {
		asm volatile("cpsid i");

		t0 = get_time();
		next_delay = __hw_clock_event_get() - t0.le.lo;

		if (DEEP_SLEEP_ALLOWED &&
		    next_delay > LPTIM_PERIOD_US + STOP_MODE_LATENCY) {
			/* deep-sleep in STOP mode */
			idle_dsleep_cnt++;

			uart_enable_wakeup(1);

			/* set deep sleep bit */
			CPU_SCB_SYSCTRL |= 0x4;

			set_lptim_event(next_delay - STOP_MODE_LATENCY,
					&lptim0);

			/* ensure outstanding memory transactions complete */
			asm volatile("dsb");

			asm("wfi");

			CPU_SCB_SYSCTRL &= ~0x4;

			/* fast forward timer according to low power counter */
			if (STM32_PWR_CPUCR & STM32_PWR_CPUCR_STOPF) {
				uint16_t lptim_dt = lptim_read() - lptim0;

				t_diff = (int)lptim_dt * LPTIM_PERIOD_US;
				t0.val = t0.val + t_diff;
				force_time(t0);
				/* clear STOPF flag */
				STM32_PWR_CPUCR |= STM32_PWR_CPUCR_CSSF;
			} else { /* STOP entry was aborted, no fixup */
				t_diff = 0;
			}

			uart_enable_wakeup(0);

			/* Record time spent in deep sleep. */
			idle_dsleep_time_us += t_diff;

			/* Calculate how close we were to missing deadline */
			margin_us = next_delay - t_diff;
			if (margin_us < 0)
				/* Use CPUTS to save stack space */
				CPUTS("Overslept!\n");

			/* Record the closest to missing a deadline. */
			if (margin_us < dsleep_recovery_margin_us)
				dsleep_recovery_margin_us = margin_us;
		} else {
			idle_sleep_cnt++;

			/* normal idle : only CPU clock stopped */
			asm("wfi");
		}
		asm volatile("cpsie i");
	}
}

#ifdef CONFIG_CMD_IDLE_STATS
/**
 * Print low power idle statistics
 */
static int command_idle_stats(int argc, char **argv)
{
	timestamp_t ts = get_time();

	ccprintf("Num idle calls that sleep:           %d\n", idle_sleep_cnt);
	ccprintf("Num idle calls that deep-sleep:      %d\n", idle_dsleep_cnt);
	ccprintf("Time spent in deep-sleep:            %.6llds\n",
			idle_dsleep_time_us);
	ccprintf("Total time on:                       %.6llds\n", ts.val);
	ccprintf("Deep-sleep closest to wake deadline: %dus\n",
			dsleep_recovery_margin_us);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(idlestats, command_idle_stats,
			"",
			"Print last idle stats");
#endif /* CONFIG_CMD_IDLE_STATS */
#endif /* CONFIG_LOW_POWER_IDLE */

void clock_init(void)
{
	/*
	 * STM32H743 Errata 2.2.15:
	 * 'Reading from AXI SRAM might lead to data read corruption'
	 *
	 * limit concurrent read access on AXI master to 1.
	 */
	STM32_AXI_TARG_FN_MOD(7) |= READ_ISS_OVERRIDE;

	/*
	 * Lock (SCUEN=0) power configuration with the LDO enabled.
	 *
	 * The STM32H7 Reference Manual says:
	 * The lower byte of this register is written once after POR and shall
	 * be written before changing VOS level or ck_sys clock frequency.
	 *
	 * The interesting side-effect of this that while the LDO is enabled by
	 * default at startup, if we enter STOP mode without locking it the MCU
	 * seems to freeze forever.
	 */
	STM32_PWR_CR3 = STM32_PWR_CR3_LDOEN;
	/*
	 * Ensure the SPI is always clocked at the same frequency
	 * by putting it on the fixed 64-Mhz HSI clock.
	 * per_ck is clocked directly by the HSI (as per the default settings).
	 */
	STM32_RCC_D2CCIP1R = (STM32_RCC_D2CCIP1R &
		~(STM32_RCC_D2CCIP1R_SPI123SEL_MASK |
		  STM32_RCC_D2CCIP1R_SPI45SEL_MASK))
		| STM32_RCC_D2CCIP1R_SPI123SEL_PERCK
		| STM32_RCC_D2CCIP1R_SPI45SEL_HSI;

	/* Use more optimized flash latency settings for ACLK = HSI = 64 Mhz */
	clock_flash_latency(FREQ_64MHZ, VOLTAGE_SCALE3);

	/* Ensure that LSI is ON to clock LPTIM1 and IWDG */
	STM32_RCC_CSR |= STM32_RCC_CSR_LSION;
	while (!(STM32_RCC_CSR & STM32_RCC_CSR_LSIRDY))
		;

#ifdef CONFIG_LOW_POWER_IDLE
	low_power_init();
#endif
}

static int command_clock(int argc, char **argv)
{
	if (argc >= 2) {
		if (!strcasecmp(argv[1], "hsi"))
			clock_set_osc(OSC_HSI);
		else if (!strcasecmp(argv[1], "pll"))
			clock_set_osc(OSC_PLL);
		else
			return EC_ERROR_PARAM1;
	}
	ccprintf("Clock frequency is now %d Hz\n", clock_get_freq());
	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(clock, command_clock,
			"hsi | pll", "Set clock frequency");