summaryrefslogtreecommitdiff
path: root/chip/stm32/spi_master.c
blob: 8943c0c682ca6483ad4b00b4137b8967a7568cfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*
 * Copyright 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * SPI master driver.
 */

#include "common.h"
#include "dma.h"
#include "gpio.h"
#include "hwtimer.h"
#include "shared_mem.h"
#include "spi.h"
#include "stm32-dma.h"
#include "task.h"
#include "timer.h"
#include "util.h"

#if defined(CHIP_VARIANT_STM32F373)  || \
	defined(CHIP_FAMILY_STM32L4) || \
	defined(CHIP_VARIANT_STM32F76X)
#define HAS_SPI3
#else
#undef  HAS_SPI3
#endif

/* The second (and third if available) SPI port are used as master */
static stm32_spi_regs_t *SPI_REGS[] = {
#ifdef CONFIG_STM32_SPI1_CONTROLLER
	STM32_SPI1_REGS,
#endif
	STM32_SPI2_REGS,
#ifdef HAS_SPI3
	STM32_SPI3_REGS,
#endif
};

#ifdef CHIP_FAMILY_STM32L4
/* DMA request mapping on channels */
static uint8_t dma_req[ARRAY_SIZE(SPI_REGS)] = {
#ifdef CONFIG_STM32_SPI1_CONTROLLER
	/* SPI1 */ 1,
#endif
	/* SPI2 */ 1,
	/* SPI3 */ 3,
};
#endif

static struct mutex spi_mutex[ARRAY_SIZE(SPI_REGS)];

#define SPI_TRANSACTION_TIMEOUT_USEC (800 * MSEC)

/* Default DMA channel options */
#ifdef CHIP_FAMILY_STM32F4
#define F4_CHANNEL(ch)	STM32_DMA_CCR_CHANNEL(ch)
#else
#define F4_CHANNEL(ch)	0
#endif

static const struct dma_option dma_tx_option[] = {
#ifdef CONFIG_STM32_SPI1_CONTROLLER
	{
		STM32_DMAC_SPI1_TX, (void *)&STM32_SPI1_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI1_TX_REQ_CH)
	},
#endif
	{
		STM32_DMAC_SPI2_TX, (void *)&STM32_SPI2_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI2_TX_REQ_CH)
	},
#ifdef HAS_SPI3
	{
		STM32_DMAC_SPI3_TX, (void *)&STM32_SPI3_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI3_TX_REQ_CH)
	},
#endif
};

static const struct dma_option dma_rx_option[] = {
#ifdef CONFIG_STM32_SPI1_CONTROLLER
	{
		STM32_DMAC_SPI1_RX, (void *)&STM32_SPI1_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI1_RX_REQ_CH)
	},
#endif
	{
		STM32_DMAC_SPI2_RX, (void *)&STM32_SPI2_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI2_RX_REQ_CH)
	},
#ifdef HAS_SPI3
	{
		STM32_DMAC_SPI3_RX, (void *)&STM32_SPI3_REGS->dr,
		STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
		| F4_CHANNEL(STM32_SPI3_RX_REQ_CH)
	},
#endif
};

static uint8_t spi_enabled[ARRAY_SIZE(SPI_REGS)];

static int spi_tx_done(stm32_spi_regs_t *spi)
{
	return !(spi->sr & (STM32_SPI_SR_FTLVL | STM32_SPI_SR_BSY));
}

static int spi_rx_done(stm32_spi_regs_t *spi)
{
	return !(spi->sr & (STM32_SPI_SR_FRLVL | STM32_SPI_SR_RXNE));
}

/* Read until RX FIFO is empty (i.e. RX done) */
static int spi_clear_rx_fifo(stm32_spi_regs_t *spi)
{
	uint8_t unused __attribute__((unused));
	uint32_t start = __hw_clock_source_read(), delta;

	while (!spi_rx_done(spi)) {
		unused = spi->dr;  /* Read one byte from FIFO */
		delta = __hw_clock_source_read() - start;
		if (delta >= SPI_TRANSACTION_TIMEOUT_USEC)
			return EC_ERROR_TIMEOUT;
	}
	return EC_SUCCESS;
}

/* Wait until TX FIFO is empty (i.e. TX done) */
static int spi_clear_tx_fifo(stm32_spi_regs_t *spi)
{
	uint32_t start = __hw_clock_source_read(), delta;

	while (!spi_tx_done(spi)) {
		/* wait for TX complete */
		delta = __hw_clock_source_read() - start;
		if (delta >= SPI_TRANSACTION_TIMEOUT_USEC)
			return EC_ERROR_TIMEOUT;
	}
	return EC_SUCCESS;
}

/**
 * Initialize SPI module, registers, and clocks
 *
 * - port: which port to initialize.
 */
static int spi_master_initialize(const struct spi_device_t *spi_device)
{
	int port = spi_device->port;

	stm32_spi_regs_t *spi = SPI_REGS[port];

	/*
	 * Set SPI master, baud rate, and software slave control.
	 * */

	/*
	 * STM32F412
	 * Section 26.3.5 Slave select (NSS) pin management and Figure 276
	 * https://www.st.com/resource/en/reference_manual/dm00180369.pdf#page=817
	 *
	 * The documentation in this section is a bit confusing, so here's a
	 * summary based on discussion with ST:
	 *
	 * Software NSS management (SSM = 1):
	 *   - In master mode, the NSS output is deactivated. You need to use a
	 *     GPIO in output mode for slave select. This is generally used for
	 *     multi-slave operation, but you can also use it for single slave
	 *     operation. In this case, you should make sure to configure a GPIO
	 *     for NSS, but *not* activate the SPI alternate function on that
	 *     same pin since that will enable hardware NSS management (see
	 *     below).
	 *   - In slave mode, the NSS input level is equal to the SSI bit value.
	 *
	 * Hardware NSS management (SSM = 0):
	 *   - In slave mode, when NSS pin is detected low the slave (MCU) is
	 *     selected.
	 *   - In master mode, there are two configurations, depending on the
	 *     SSOE bit in register SPIx_CR1.
	 *       - NSS output enable (SSM=0, SSOE=1):
	 *         The MCU (master) drives NSS low as soon as SPI is enabled
	 *         (SPE=1) and releases it when SPI is disabled (SPE=0).
	 *
	 *       - NSS output disable (SSM=0, SSOE=0):
	 *         Allows multimaster capability. The MCU (master) drives NSS
	 *         low.  If another master tries to takes control of the bus and
	 *         NSS is pulled low, a mode fault is generated and the MCU
	 *         changes to slave mode.
	 *
	 *   - NSS output disable (SSM=0, SSOE=0): if the MCU is acting as
	 *     master on the bus, this config allows multimaster capability. If
	 *     the NSS pin is pulled low in this mode, the SPI enters master
	 *     mode fault state and the device is automatically reconfigured in
	 *     slave mode.  In slave mode, the NSS pin works as a standard "chip
	 *     select" input and the slave is selected while NSS lin is at low
	 *     level.
	 */
	spi->cr1 = STM32_SPI_CR1_MSTR | STM32_SPI_CR1_SSM | STM32_SPI_CR1_SSI |
		   (spi_device->div << 3);

#ifdef CHIP_FAMILY_STM32L4
	dma_select_channel(dma_tx_option[port].channel, dma_req[port]);
	dma_select_channel(dma_rx_option[port].channel, dma_req[port]);
#endif
	/*
	 * Configure 8-bit datasize, set FRXTH, enable DMA,
	 * and set data size (applies to STM32F0 only).
	 *
	 * STM32F412:
	 * https://www.st.com/resource/en/reference_manual/dm00180369.pdf#page=852
	 *
	 *
	 * STM32F0:
	 * https://www.st.com/resource/en/reference_manual/dm00031936.pdf#page=803
	 */
	spi->cr2 = STM32_SPI_CR2_TXDMAEN | STM32_SPI_CR2_RXDMAEN |
			STM32_SPI_CR2_FRXTH | STM32_SPI_CR2_DATASIZE(8);

#ifdef CONFIG_SPI_HALFDUPLEX
	spi->cr1 |= STM32_SPI_CR1_BIDIMODE | STM32_SPI_CR1_BIDIOE;
#endif

	/* Drive Chip Select high before turning on SPI module */
	gpio_set_level(spi_device->gpio_cs, 1);

	/* Enable SPI hardware module. This will actively drive the CLK pin */
	spi->cr1 |= STM32_SPI_CR1_SPE;

	/* Set flag */
	spi_enabled[port] = 1;

	return EC_SUCCESS;
}

/**
 * Shutdown SPI module
 */
static int spi_master_shutdown(const struct spi_device_t *spi_device)
{
	int rv = EC_SUCCESS;
	int port = spi_device->port;
	stm32_spi_regs_t *spi = SPI_REGS[port];

	/* Set flag */
	spi_enabled[port] = 0;

	/* Disable DMA streams */
	dma_disable(dma_tx_option[port].channel);
	dma_disable(dma_rx_option[port].channel);

	/* Disable SPI. Let the CLK pin float. */
	spi->cr1 &= ~STM32_SPI_CR1_SPE;

	spi_clear_rx_fifo(spi);

	/* Disable DMA buffers */
	spi->cr2 &= ~(STM32_SPI_CR2_TXDMAEN | STM32_SPI_CR2_RXDMAEN);

	return rv;
}

int spi_enable(const struct spi_device_t *spi_device, int enable)
{
	if (enable == spi_enabled[spi_device->port])
		return EC_SUCCESS;
	if (enable)
		return spi_master_initialize(spi_device);
	else
		return spi_master_shutdown(spi_device);
}

static int spi_dma_start(int port, const uint8_t *txdata,
			 uint8_t *rxdata, int len)
{
	dma_chan_t *txdma;

	/* Set up RX DMA */
	if (rxdata)
		dma_start_rx(&dma_rx_option[port], len, rxdata);

	/* Set up TX DMA */
	if (txdata) {
		txdma = dma_get_channel(dma_tx_option[port].channel);
		dma_prepare_tx(&dma_tx_option[port], len, txdata);
		dma_go(txdma);
	}

	return EC_SUCCESS;
}

static bool dma_is_enabled_(const struct dma_option *option)
{
	return dma_is_enabled(dma_get_channel(option->channel));
}

static int spi_dma_wait(int port)
{
	int rv = EC_SUCCESS;

	/* Wait for DMA transmission to complete */
	if (dma_is_enabled_(&dma_tx_option[port])) {
		/*
		 * In TX mode, SPI only generates clock when we write to FIFO.
		 * Therefore, even though `dma_wait` polls with interval 0.1ms,
		 * we won't send extra bytes.
		 */
		rv = dma_wait(dma_tx_option[port].channel);
		if (rv)
			return rv;
		/* Disable TX DMA */
		dma_disable(dma_tx_option[port].channel);
	}

	/* Wait for DMA reception to complete */
	if (dma_is_enabled_(&dma_rx_option[port])) {
		/*
		 * Because `dma_wait` polls with interval 0.1ms, we will read at
		 * least ~100 bytes (with 8MHz clock).  If you don't want this
		 * overhead, you can use interrupt handler
		 * (`dma_enable_tc_interrupt_callback`) and disable SPI
		 * interface in callback function.
		 */
		rv = dma_wait(dma_rx_option[port].channel);
		if (rv)
			return rv;
		/* Disable RX DMA */
		dma_disable(dma_rx_option[port].channel);
	}
	return rv;
}

int spi_transaction_async(const struct spi_device_t *spi_device,
			  const uint8_t *txdata, int txlen,
			  uint8_t *rxdata, int rxlen)
{
	int rv = EC_SUCCESS;
	int port = spi_device->port;
	int full_readback = 0;

	stm32_spi_regs_t *spi = SPI_REGS[port];
	char *buf = NULL;

	/* We should not ever be called when disabled, but fail early if so. */
	if (!spi_enabled[port])
		return EC_ERROR_BUSY;

#ifndef CONFIG_SPI_HALFDUPLEX
	if (rxlen == SPI_READBACK_ALL) {
		buf = rxdata;
		full_readback = 1;
	} else {
		rv = shared_mem_acquire(MAX(txlen, rxlen), &buf);
		if (rv != EC_SUCCESS)
			return rv;
	}
#endif

	/* Drive SS low */
	gpio_set_level(spi_device->gpio_cs, 0);

	spi_clear_rx_fifo(spi);

	rv = spi_dma_start(port, txdata, buf, txlen);
	if (rv != EC_SUCCESS)
		goto err_free;

#ifdef CONFIG_SPI_HALFDUPLEX
	spi->cr1 |= STM32_SPI_CR1_BIDIOE;
#endif

	if (full_readback)
		return EC_SUCCESS;

	rv = spi_dma_wait(port);
	if (rv != EC_SUCCESS)
		goto err_free;

	spi_clear_tx_fifo(spi);

	if (rxlen) {
		rv = spi_dma_start(port, buf, rxdata, rxlen);
		if (rv != EC_SUCCESS)
			goto err_free;
#ifdef CONFIG_SPI_HALFDUPLEX
		spi->cr1 &= ~STM32_SPI_CR1_BIDIOE;
#endif
	}

err_free:
#ifndef CONFIG_SPI_HALFDUPLEX
	if (!full_readback)
		shared_mem_release(buf);
#endif
	return rv;
}

int spi_transaction_flush(const struct spi_device_t *spi_device)
{
	int rv = spi_dma_wait(spi_device->port);

	/* Drive SS high */
	gpio_set_level(spi_device->gpio_cs, 1);

	return rv;
}

int spi_transaction_wait(const struct spi_device_t *spi_device)
{
	return spi_dma_wait(spi_device->port);
}

int spi_transaction(const struct spi_device_t *spi_device,
		    const uint8_t *txdata, int txlen,
		    uint8_t *rxdata, int rxlen)
{
	int rv;
	int port = spi_device->port;

	mutex_lock(spi_mutex + port);
	rv = spi_transaction_async(spi_device, txdata, txlen, rxdata, rxlen);
	rv |= spi_transaction_flush(spi_device);
	mutex_unlock(spi_mutex + port);

	return rv;
}