summaryrefslogtreecommitdiff
path: root/common/extpower_kip.c
blob: 5da5ea2e35bb0c5b240cddfb57b901f24d6300b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/*
 * The limits vary depending on each adapter's power rating, so we
 * need to watch for changes and adjust the limits and high-current thresholds
 * accordingly. If we go over, the AP needs to throttle itself. The EC's
 * charging state logic isn't affected, just the AP's P-State. We try to save
 * PROCHOT as a last resort.
 */

#include <limits.h>				/* part of the compiler */

#include "adc.h"
#include "battery_smart.h"
#include "charge_state.h"
#include "charger.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "driver/charger/bq24715.h"
#include "extpower.h"
#include "extpower_kip.h"
#include "hooks.h"
#include "host_command.h"
#include "throttle_ap.h"
#include "util.h"

/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
#define CPRINTF(format, args...) cprintf(CC_CHARGER, format, ## args)

/* Values for our supported adapters */
static const char * const ad_name[] = {
	"unknown",
	"45W",
	"65W",
	"90W"
};
BUILD_ASSERT(ARRAY_SIZE(ad_name) == NUM_ADAPTER_TYPES);

test_export_static
struct adapter_id_vals ad_id_vals[] = {
	/* mV low, mV high */
	{INT_MIN, INT_MAX},			/* anything = ADAPTER_UNKNOWN */
	{434,     554},				/* ADAPTER_45W */
	{561,     717},				/* ADAPTER_65W */
	{725,     925}				/* ADAPTER_90W */
};
BUILD_ASSERT(ARRAY_SIZE(ad_id_vals) == NUM_ADAPTER_TYPES);

test_export_static
int ad_input_current[] = {
	/*
	 * Current limits in mA for each adapter.
	 * Values are in hex to avoid roundoff, because the BQ24715 Input
	 * Current Register masks off bits 6-0.
	 *
	 * Note that this is very specific to the combinations of adapters and
	 * BQ24715 charger chip on Kip.
	 */

	0x0800,			/* ADAPTER_UNKNOWN ~ 2.0 A */
	0x0800,			/* ADAPTER_45W ~ 2.0 A */
	0x0c00,			/* ADAPTER_65W ~ 3.0 A */
	0x1100			/* ADAPTER_90W ~ 4.3 A */
};
BUILD_ASSERT(ARRAY_SIZE(ad_input_current) == NUM_ADAPTER_TYPES);

test_export_static
struct adapter_limits ad_limits[][NUM_AC_THRESHOLDS] = {
	/* ADAPTER_UNKNOWN - treat as 45W */
	{
		{ 2310, 1960, 16, 80, },
		{ 2560, 2210, 1, 80, }
	},
	/* ADAPTER_45W */
	{
		{ 2310, 1960, 16, 80, },
		{ 2560, 2210, 1, 80, }
	},
	/* ADAPTER_65W */
	{
		{ 3330, 2980, 16, 80, },
		{ 3590, 3240, 1, 80, }
	},
	/* ADAPTER_90W */
	{
		{ 4620, 4270, 16, 80, },
		{ 4870, 4520, 1, 80, }
	}
};
BUILD_ASSERT(ARRAY_SIZE(ad_limits) == NUM_ADAPTER_TYPES);

/* The battery current limits are independent of adapter rating.
 * hi_val and lo_val are DISCHARGE current in mA.
 */
test_export_static
struct adapter_limits batt_limits[] = {
	{ 5500, 5000, 16, 50, },
	{ 6000, 5500, 1, 50, },
};
BUILD_ASSERT(ARRAY_SIZE(batt_limits) == NUM_BATT_THRESHOLDS);

static int last_mv;
static enum adapter_type identify_adapter(void)
{
	int i;
	last_mv = adc_read_channel(ADC_AC_ADAPTER_ID_VOLTAGE);

	/* ADAPTER_UNKNOWN matches everything, so search backwards */
	for (i = NUM_ADAPTER_TYPES - 1; i >= 0; i--)
		if (last_mv >= ad_id_vals[i].lo && last_mv <= ad_id_vals[i].hi)
			return i;

	return ADAPTER_UNKNOWN;			/* should never get here */
}

test_export_static enum adapter_type ac_adapter;
static void ac_change_callback(void)
{
	if (extpower_is_present()) {
		ac_adapter = identify_adapter();
		CPRINTF("[%T AC Adapter is %s (%dmv)]\n",
			ad_name[ac_adapter], last_mv);
	} else {
		ac_adapter = ADAPTER_UNKNOWN;
		CPRINTF("[%T AC Adapter is not present]\n");
		/* Charger unavailable. Clear local flags */
	}
}
DECLARE_HOOK(HOOK_AC_CHANGE, ac_change_callback, HOOK_PRIO_DEFAULT);

static void set_ad_input_current(void)
{
	int r;

	/* Set allowed Io based on adapter. The charger will sometimes change
	 * this setting all by itself due to inrush current limiting, so we
	 * can't assume it stays where we put it. */
	r = charger_set_input_current(ad_input_current[ac_adapter]);
	if (r != EC_SUCCESS)
		goto bad;

	return;
bad:
	CPRINTF("[%T ERROR: can't talk to charger: %d]\n", r);
}


/* We need to OR all the possible reasons to throttle in order to decide
 * whether it should happen or not. Use one bit per reason.
 */
#define BATT_REASON_OFFSET 0
#define AC_REASON_OFFSET NUM_BATT_THRESHOLDS
BUILD_ASSERT(NUM_BATT_THRESHOLDS + NUM_AC_THRESHOLDS < 32);

test_export_static uint32_t ap_is_throttled;
static void set_throttle(int on, int whosays)
{
	if (on)
		ap_is_throttled |= (1 << whosays);
	else
		ap_is_throttled &= ~(1 << whosays);

	throttle_ap(ap_is_throttled ? THROTTLE_ON : THROTTLE_OFF,
		    THROTTLE_SOFT, THROTTLE_SRC_POWER);
}

test_export_static
void check_threshold(int current, struct adapter_limits *lim, int whoami)
{
	if (lim->triggered) {
		/* watching for current to drop */
		if (current < lim->lo_val) {
			if (++lim->count >= lim->lo_cnt) {
				set_throttle(0, whoami);
				lim->count = 0;
				lim->triggered = 0;
			}
		} else {
			lim->count = 0;
		}
	} else {
		/* watching for current to rise */
		if (current > lim->hi_val) {
			if (++lim->count >= lim->hi_cnt) {
				set_throttle(1, whoami);
				lim->count = 0;
				lim->triggered = 1;
			}
		} else {
			lim->count = 0;
		}
	}
}


test_export_static
void watch_battery_closely(struct charge_state_context *ctx)
{
	int i;
	int current = ctx->curr.batt.current;

	/* NB: The values in batt_limits[] indicate DISCHARGE current (mA).
	 * However, the value returned from battery_current() is CHARGE
	 * current: postive for charging and negative for discharging.
	 *
	 * Turbo mode can discharge the battery even while connected to the
	 * charger. The spec says not to turn throttling off until the battery
	 * drain has been below the threshold for 5 seconds. That means we
	 * still need to check while on AC, or else just plugging the adapter
	 * in and out would mess up that 5-second timeout. Since the threshold
	 * logic uses signed numbers to compare the limits, everything Just
	 * Works.
	 */

	/* Check limits against DISCHARGE current, not CHARGE current! */
	for (i = 0; i < NUM_BATT_THRESHOLDS; i++)
		check_threshold(-current, &batt_limits[i], /* invert sign! */
				i + BATT_REASON_OFFSET);
}

void watch_adapter_closely(struct charge_state_context *ctx)
{
	int current, i;

	/* We always watch the battery current drain, even when on AC. */
	watch_battery_closely(ctx);

	/* If AC present, we can set adpter input current for each adpater. */
	if (extpower_is_present())
		set_ad_input_current();

	/* If the AP is off, we won't need to throttle it. */
	if (chipset_in_state(CHIPSET_STATE_ANY_OFF |
			     CHIPSET_STATE_SUSPEND))
		return;

	/* Check all the thresholds. */
	current = adc_read_channel(ADC_CH_CHARGER_CURRENT);
	for (i = 0; i < NUM_AC_THRESHOLDS; i++)
		check_threshold(current, &ad_limits[ac_adapter][i],
			i + AC_REASON_OFFSET);
}

static int command_adapter(int argc, char **argv)
{
	enum adapter_type v = identify_adapter();
	ccprintf("Adapter %s (%dmv), ap_is_throttled 0x%08x\n",
		 ad_name[v], last_mv, ap_is_throttled);
	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(adapter, command_adapter,
			NULL,
			"Display AC adapter information",
			NULL);