summaryrefslogtreecommitdiff
path: root/common/motion_sense.c
blob: f157838f12c85e2acf648f804c496b5c5968df3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Motion sense module to read from various motion sensors. */

#include "accelgyro.h"
#include "common.h"
#include "console.h"
#include "hooks.h"
#include "host_command.h"
#include "lid_angle.h"
#include "math_util.h"
#include "motion_sense.h"
#include "power.h"
#include "timer.h"
#include "task.h"
#include "util.h"

/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_SENSE, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_SENSE, format, ## args)

/* Minimum time in between running motion sense task loop. */
#define MIN_MOTION_SENSE_WAIT_TIME (1 * MSEC)

/* Time to wait in between failed attempts to initialize sensors */
#define TASK_MOTION_SENSE_WAIT_TIME (500 * MSEC)

/* For vector_3_t, define which coordinates are in which location. */
enum {
	X, Y, Z
};

/* Current acceleration vectors and current lid angle. */
static float lid_angle_deg;
static int lid_angle_is_reliable;

/* Bounds for setting the sensor polling interval. */
#define MIN_POLLING_INTERVAL_MS 5
#define MAX_POLLING_INTERVAL_MS 1000

/* Accelerometer polling intervals based on chipset state. */
static int accel_interval_ap_on_ms = 10;
static const int accel_interval_ap_suspend_ms = 100;

/*
 * Angle threshold for how close the hinge aligns with gravity before
 * considering the lid angle calculation unreliable. For computational
 * efficiency, value is given unit-less, so if you want the threshold to be
 * at 15 degrees, the value would be cos(15 deg) = 0.96593.
 */
#define HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD 0.96593F

/* Sampling interval for measuring acceleration and calculating lid angle. */
static int accel_interval_ms;

#ifdef CONFIG_CMD_LID_ANGLE
static int accel_disp;
#endif

/* Pointer to constant acceleration orientation data. */
const struct accel_orientation * const p_acc_orient = &acc_orient;

/**
 * Calculate the lid angle using two acceleration vectors, one recorded in
 * the base and one in the lid.
 *
 * @param base Base accel vector
 * @param lid  Lid accel vector
 * @param lid_angle Pointer to location to store lid angle result
 *
 * @return flag representing if resulting lid angle calculation is reliable.
 */
static int calculate_lid_angle(const vector_3_t base, const vector_3_t lid,
		float *lid_angle)
{
	vector_3_t v;
	float ang_lid_to_base, ang_lid_90, ang_lid_270;
	float lid_to_base, base_to_hinge;
	int reliable = 1;

	/*
	 * The angle between lid and base is:
	 * acos((cad(base, lid) - cad(base, hinge)^2) /(1 - cad(base, hinge)^2))
	 * where cad() is the cosine_of_angle_diff() function.
	 *
	 * Make sure to check for divide by 0.
	 */
	lid_to_base = cosine_of_angle_diff(base, lid);
	base_to_hinge = cosine_of_angle_diff(base, p_acc_orient->hinge_axis);

	/*
	 * If hinge aligns too closely with gravity, then result may be
	 * unreliable.
	 */
	if (ABS(base_to_hinge) > HINGE_ALIGNED_WITH_GRAVITY_THRESHOLD)
		reliable = 0;

	base_to_hinge = SQ(base_to_hinge);

	/* Check divide by 0. */
	if (ABS(1.0F - base_to_hinge) < 0.01F) {
		*lid_angle = 0.0;
		return 0;
	}

	ang_lid_to_base = arc_cos(
			(lid_to_base - base_to_hinge) / (1 - base_to_hinge));

	/*
	 * The previous calculation actually has two solutions, a positive and
	 * a negative solution. To figure out the sign of the answer, calculate
	 * the angle between the actual lid angle and the estimated vector if
	 * the lid were open to 90 deg, ang_lid_90. Also calculate the angle
	 * between the actual lid angle and the estimated vector if the lid
	 * were open to 270 deg, ang_lid_270. The smaller of the two angles
	 * represents which one is closer. If the lid is closer to the
	 * estimated 270 degree vector then the result is negative, otherwise
	 * it is positive.
	 */
	rotate(base, p_acc_orient->rot_hinge_90, v);
	ang_lid_90 = cosine_of_angle_diff(v, lid);
	rotate(v, p_acc_orient->rot_hinge_180, v);
	ang_lid_270 = cosine_of_angle_diff(v, lid);

	/*
	 * Note that ang_lid_90 and ang_lid_270 are not in degrees, because
	 * the arc_cos() was never performed. But, since arc_cos() is
	 * monotonically decreasing, we can do this comparison without ever
	 * taking arc_cos(). But, since the function is monotonically
	 * decreasing, the logic of this comparison is reversed.
	 */
	if (ang_lid_270 > ang_lid_90)
		ang_lid_to_base = -ang_lid_to_base;

	/* Place lid angle between 0 and 360 degrees. */
	if (ang_lid_to_base < 0)
		ang_lid_to_base += 360;

	*lid_angle = ang_lid_to_base;
	return reliable;
}

int motion_get_lid_angle(void)
{
	if (lid_angle_is_reliable)
		/*
		 * Round to nearest int by adding 0.5. Note, only works because
		 * lid angle is known to be positive.
		 */
		return (int)(lid_angle_deg + 0.5F);
	else
		return (int)LID_ANGLE_UNRELIABLE;
}

static void clock_chipset_shutdown(void)
{
	int i;
	struct motion_sensor_t *sensor;
	accel_interval_ms = accel_interval_ap_suspend_ms;
	for (i = 0; i < motion_sensor_count; i++) {
		sensor = &motion_sensors[i];
		sensor->state = SENSOR_NOT_INITIALIZED;
		sensor->power = SENSOR_POWER_OFF;
	}
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, clock_chipset_shutdown, HOOK_PRIO_DEFAULT);

static void clock_chipset_startup(void)
{
	int i;
	struct motion_sensor_t *sensor;
	accel_interval_ms = accel_interval_ap_on_ms;
	for (i = 0; i < motion_sensor_count; i++) {
		sensor = &motion_sensors[i];
		sensor->power = SENSOR_POWER_ON;
	}
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, clock_chipset_startup, HOOK_PRIO_DEFAULT);

/* Write to LPC status byte to represent that accelerometers are present. */
static inline void set_present(uint8_t *lpc_status)
{
	*lpc_status |= EC_MEMMAP_ACC_STATUS_PRESENCE_BIT;
}

/* Update/Write LPC data */
static inline void update_sense_data(uint8_t *lpc_status,
		uint16_t *lpc_data, int *psample_id)
{
	int i;
	struct motion_sensor_t *sensor;
	/*
	 * Set the busy bit before writing the sensor data. Increment
	 * the counter and clear the busy bit after writing the sensor
	 * data. On the host side, the host needs to make sure the busy
	 * bit is not set and that the counter remains the same before
	 * and after reading the data.
	 */
	*lpc_status |= EC_MEMMAP_ACC_STATUS_BUSY_BIT;

	/*
	 * Copy sensor data to shared memory. Note that this code
	 * assumes little endian, which is what the host expects. Also,
	 * note that we share the lid angle calculation with host only
	 * for debugging purposes. The EC lid angle is an approximation
	 * with un-calibrated accels. The AP calculates a separate,
	 * more accurate lid angle.
	 */
	lpc_data[0] = motion_get_lid_angle();
	for (i = 0; i < motion_sensor_count; i++) {
		sensor = &motion_sensors[i];
		lpc_data[1+3*i] = sensor->xyz[X];
		lpc_data[2+3*i] = sensor->xyz[Y];
		lpc_data[3+3*i] = sensor->xyz[Z];
	}

	/*
	 * Increment sample id and clear busy bit to signal we finished
	 * updating data.
	 */
	*psample_id = (*psample_id + 1) &
			EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
	*lpc_status = EC_MEMMAP_ACC_STATUS_PRESENCE_BIT | *psample_id;
}

static inline void motion_sense_init(struct motion_sensor_t *sensor)
{
	int ret;

	if (sensor->power == SENSOR_POWER_OFF)
		return;

	if (sensor->state != SENSOR_NOT_INITIALIZED)
		return;

	/* Initialize accelerometers. */
	ret = sensor->drv->init(sensor);
	if (ret != EC_SUCCESS) {
		sensor->state = SENSOR_INIT_ERROR;
		return;
	}

	/* Initialize sampling interval. */
	accel_interval_ms = accel_interval_ap_suspend_ms;

	sensor->state = SENSOR_INITIALIZED;
}


static int motion_sense_read(struct motion_sensor_t *sensor)
{
	int ret;

	if (sensor->power == SENSOR_POWER_OFF)
		return EC_ERROR_UNKNOWN;

	if (sensor->state != SENSOR_INITIALIZED)
		return EC_ERROR_UNKNOWN;

	/* Read all raw X,Y,Z accelerations. */
	ret = sensor->drv->read(sensor,
		&sensor->raw_xyz[X],
		&sensor->raw_xyz[Y],
		&sensor->raw_xyz[Z]);

	if (ret != EC_SUCCESS) {
		sensor->state = SENSOR_INIT_ERROR;
		return EC_ERROR_UNKNOWN;
	}

	return EC_SUCCESS;
}

/*
 * Motion Sense Task
 * Requirement: motion_sensors[] are defined in board.c file.
 * Two (minimium) Accelerometers:
 *    1 in the A/B(lid, display) and 1 in the C/D(base, keyboard)
 * Gyro Sensor (optional)
 */
void motion_sense_task(void)
{
	int i;
	int wait_us;
	static timestamp_t ts0, ts1;
	uint8_t *lpc_status;
	uint16_t *lpc_data;
	int sample_id = 0;
	int rd_cnt;
	struct motion_sensor_t *sensor;
	struct motion_sensor_t *accel_base = NULL;
	struct motion_sensor_t *accel_lid = NULL;

	lpc_status = host_get_memmap(EC_MEMMAP_ACC_STATUS);
	lpc_data = (uint16_t *)host_get_memmap(EC_MEMMAP_ACC_DATA);

	for (i = 0; i < motion_sensor_count; ++i) {
		sensor = &motion_sensors[i];
		sensor->state = SENSOR_NOT_INITIALIZED;
		if ((LOCATION_BASE == sensor->location)
			&& (SENSOR_ACCELEROMETER == sensor->type))
			accel_base = sensor;

		if ((LOCATION_LID == sensor->location)
			&& (SENSOR_ACCELEROMETER == sensor->type)) {
			accel_lid = sensor;
		}
	}

	set_present(lpc_status);

	while (1) {
		ts0 = get_time();
		rd_cnt = 0;
		for (i = 0; i < motion_sensor_count; ++i) {

			sensor = &motion_sensors[i];

			if (sensor->power == SENSOR_POWER_OFF)
				continue;

			motion_sense_init(sensor);

			if (EC_SUCCESS == motion_sense_read(sensor))
				rd_cnt++;

			/*
			 * Rotate the lid accel vector
			 * so the reference frame aligns with the base sensor.
			 */
			if ((LOCATION_LID == sensor->location)
				&& (SENSOR_ACCELEROMETER == sensor->type))
				rotate(accel_lid->raw_xyz,
					p_acc_orient->rot_align,
					accel_lid->xyz);
			else
				memcpy(sensor->xyz, sensor->raw_xyz,
					sizeof(vector_3_t));
		}

		if (rd_cnt != motion_sensor_count) {
			task_wait_event(TASK_MOTION_SENSE_WAIT_TIME);
			continue;
		}

		/* Calculate angle of lid accel. */
		lid_angle_is_reliable = calculate_lid_angle(
				accel_base->xyz,
				accel_lid->xyz,
				&lid_angle_deg);

		for (i = 0; i < motion_sensor_count; ++i) {
			sensor = &motion_sensors[i];
			/*
			 * TODO(crosbug.com/p/25597):
			 * Add filter to smooth lid angle.
			 */
			/* Rotate accels into standard reference frame. */
			if (sensor->type == SENSOR_ACCELEROMETER)
				rotate(sensor->xyz,
					p_acc_orient->rot_standard_ref,
					sensor->xyz);
		}

#ifdef CONFIG_LID_ANGLE_KEY_SCAN
		lidangle_keyscan_update(motion_get_lid_angle());
#endif

#ifdef CONFIG_CMD_LID_ANGLE
		if (accel_disp) {
			CPRINTF("[%T ");
			for (i = 0; i < motion_sensor_count; ++i) {
				sensor = &motion_sensors[i];
				CPRINTF("%s=%-5d, %-5d, %-5d ", sensor->name,
					sensor->raw_xyz[X],
					sensor->raw_xyz[Y],
					sensor->raw_xyz[Z]);
			}
			CPRINTF("a=%-6.1d r=%d", (int)(10*lid_angle_deg),
					lid_angle_is_reliable);
			CPRINTF("]\n");
		}
#endif
		update_sense_data(lpc_status, lpc_data, &sample_id);

		/* Delay appropriately to keep sampling time consistent. */
		ts1 = get_time();
		wait_us = accel_interval_ms * MSEC - (ts1.val-ts0.val);

		/*
		 * Guarantee some minimum delay to allow other lower priority
		 * tasks to run.
		 */
		if (wait_us < MIN_MOTION_SENSE_WAIT_TIME)
			wait_us = MIN_MOTION_SENSE_WAIT_TIME;

		task_wait_event(wait_us);
	}
}

void accel_int_lid(enum gpio_signal signal)
{
	/*
	 * Print statement is here for testing with console accelint command.
	 * Remove print statement when interrupt is used for real.
	 */
	CPRINTS("Accelerometer wake-up interrupt occurred on lid");
}

void accel_int_base(enum gpio_signal signal)
{
	/*
	 * Print statement is here for testing with console accelint command.
	 * Remove print statement when interrupt is used for real.
	 */
	CPRINTS("Accelerometer wake-up interrupt occurred on base");
}

/*****************************************************************************/
/* Host commands */

/* Function to map host sensor IDs to motion sensor. */
static struct motion_sensor_t
	*host_sensor_id_to_motion_sensor(int host_id)
{
	int i;
	struct motion_sensor_t *sensor = NULL;

	for (i = 0; i < motion_sensor_count; ++i) {

		if ((LOCATION_BASE == sensor->location)
			&& (SENSOR_ACCELEROMETER == sensor->type)
			&& (host_id == EC_MOTION_SENSOR_ACCEL_BASE)) {
			sensor = &motion_sensors[i];
			break;
		}

		if ((LOCATION_LID == sensor->location)
			&& (SENSOR_ACCELEROMETER == sensor->type)
			&& (host_id == EC_MOTION_SENSOR_ACCEL_LID)) {
			sensor = &motion_sensors[i];
			break;
		}

		if ((LOCATION_BASE == sensor->location)
			&& (SENSOR_GYRO == sensor->type)
			&& (host_id == EC_MOTION_SENSOR_GYRO)) {
			sensor = &motion_sensors[i];
			break;
		}
	}

	if (!sensor)
		return NULL;

	if ((sensor->power == SENSOR_POWER_ON)
		&& (sensor->state == SENSOR_INITIALIZED))
		return sensor;

	/* If no match then the EC currently doesn't support ID received. */
	return NULL;
}

static int host_cmd_motion_sense(struct host_cmd_handler_args *args)
{
	const struct ec_params_motion_sense *in = args->params;
	struct ec_response_motion_sense *out = args->response;
	struct motion_sensor_t *sensor;
	int i, data;

	switch (in->cmd) {
	case MOTIONSENSE_CMD_DUMP:
		out->dump.module_flags =
			(*(host_get_memmap(EC_MEMMAP_ACC_STATUS)) &
				EC_MEMMAP_ACC_STATUS_PRESENCE_BIT) ?
					MOTIONSENSE_MODULE_FLAG_ACTIVE : 0;

		for (i = 0; i < motion_sensor_count; i++) {
			sensor = &motion_sensors[i];
			out->dump.sensor_flags[i] =
				MOTIONSENSE_SENSOR_FLAG_PRESENT;
			out->dump.data[0+3*i] = sensor->xyz[X];
			out->dump.data[1+3*i] = sensor->xyz[Y];
			out->dump.data[2+3*i] = sensor->xyz[Z];
		}

		args->response_size = sizeof(out->dump);
		break;

	case MOTIONSENSE_CMD_INFO:
		sensor = host_sensor_id_to_motion_sensor(
			in->sensor_odr.sensor_num);

		if (sensor == NULL)
			return EC_RES_INVALID_PARAM;

		if (sensor->type == SENSOR_ACCELEROMETER)
			out->info.type = MOTIONSENSE_TYPE_ACCEL;

		else if (sensor->type == SENSOR_GYRO)
			out->info.type = MOTIONSENSE_TYPE_GYRO;

		if (sensor->location == LOCATION_BASE)
			out->info.location = MOTIONSENSE_LOC_BASE;

		else if (sensor->location == LOCATION_LID)
			out->info.location = MOTIONSENSE_LOC_LID;

		if (sensor->chip == SENSOR_CHIP_KXCJ9)
			out->info.chip = MOTIONSENSE_CHIP_KXCJ9;

		if (sensor->chip == SENSOR_CHIP_LSM6DS0)
			out->info.chip = MOTIONSENSE_CHIP_LSM6DS0;

		args->response_size = sizeof(out->info);

		break;

	case MOTIONSENSE_CMD_EC_RATE:
		/*
		 * Set new sensor sampling rate when AP is on, if the data arg
		 * has a value.
		 */
		if (in->ec_rate.data != EC_MOTION_SENSE_NO_VALUE) {
			/* Bound the new sampling rate. */
			data = in->ec_rate.data;
			if (data < MIN_POLLING_INTERVAL_MS)
				data = MIN_POLLING_INTERVAL_MS;
			if (data > MAX_POLLING_INTERVAL_MS)
				data = MAX_POLLING_INTERVAL_MS;

			accel_interval_ap_on_ms = data;
			accel_interval_ms = data;
		}

		out->ec_rate.ret = accel_interval_ap_on_ms;

		args->response_size = sizeof(out->ec_rate);
		break;

	case MOTIONSENSE_CMD_SENSOR_ODR:
		/* Verify sensor number is valid. */
		sensor = host_sensor_id_to_motion_sensor(
			in->sensor_odr.sensor_num);
		if (sensor == NULL)
			return EC_RES_INVALID_PARAM;

		/* Set new data rate if the data arg has a value. */
		if (in->sensor_odr.data != EC_MOTION_SENSE_NO_VALUE) {
			if (sensor->drv->set_data_rate(sensor,
						      in->sensor_odr.data,
						      in->sensor_odr.roundup)
						      != EC_SUCCESS) {
				CPRINTS("MS bad sensor rate %d",
						in->sensor_odr.data);
				return EC_RES_INVALID_PARAM;
			}
		}

		sensor->drv->get_data_rate(sensor, &data);
		out->sensor_odr.ret = data;

		args->response_size = sizeof(out->sensor_odr);
		break;

	case MOTIONSENSE_CMD_SENSOR_RANGE:
		/* Verify sensor number is valid. */
		sensor = host_sensor_id_to_motion_sensor(
			in->sensor_odr.sensor_num);
		if (sensor == NULL)
			return EC_RES_INVALID_PARAM;

		/* Set new data rate if the data arg has a value. */
		if (in->sensor_range.data != EC_MOTION_SENSE_NO_VALUE) {
			if (sensor->drv->set_range(sensor,
						   in->sensor_range.data,
						   in->sensor_range.roundup)
						   != EC_SUCCESS) {
				CPRINTS("MS bad sensor range %d",
						in->sensor_range.data);
				return EC_RES_INVALID_PARAM;
			}
		}

		sensor->drv->get_range(sensor, &data);
		out->sensor_range.ret = data;

		args->response_size = sizeof(out->sensor_range);
		break;

	case MOTIONSENSE_CMD_KB_WAKE_ANGLE:
#ifdef CONFIG_LID_ANGLE_KEY_SCAN
		/* Set new keyboard wake lid angle if data arg has value. */
		if (in->kb_wake_angle.data != EC_MOTION_SENSE_NO_VALUE)
			lid_angle_set_kb_wake_angle(in->kb_wake_angle.data);

		out->kb_wake_angle.ret = lid_angle_get_kb_wake_angle();
#else
		out->kb_wake_angle.ret = 0;
#endif
		args->response_size = sizeof(out->kb_wake_angle);

		break;

	default:
		CPRINTS("MS bad cmd 0x%x", in->cmd);
		return EC_RES_INVALID_PARAM;
	}

	return EC_RES_SUCCESS;
}

DECLARE_HOST_COMMAND(EC_CMD_MOTION_SENSE_CMD,
		     host_cmd_motion_sense,
		     EC_VER_MASK(0));

/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_LID_ANGLE
static int command_ctrl_print_lid_angle_calcs(int argc, char **argv)
{
	char *e;
	int val;

	if (argc > 3)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is on/off whether to display accel data. */
	if (argc > 1) {
		if (!parse_bool(argv[1], &val))
			return EC_ERROR_PARAM1;

		accel_disp = val;
	}

	/*
	 * Second arg changes the accel task time interval. Note accel
	 * sampling interval will be clobbered when chipset suspends or
	 * resumes.
	 */
	if (argc > 2) {
		val = strtoi(argv[2], &e, 0);
		if (*e)
			return EC_ERROR_PARAM2;

		accel_interval_ms = val;
	}

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(lidangle, command_ctrl_print_lid_angle_calcs,
	"on/off [interval]",
	"Print lid angle calculations and set calculation frequency.", NULL);
#endif /* CONFIG_CMD_LID_ANGLE */

#ifdef CONFIG_CMD_ACCELS
static int command_accelrange(int argc, char **argv)
{
	char *e;
	int id, data, round = 1;
	struct motion_sensor_t *sensor;

	if (argc < 2 || argc > 4)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is sensor id. */
	id = strtoi(argv[1], &e, 0);
	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	sensor = &motion_sensors[id];

	if (argc >= 3) {
		/* Second argument is data to write. */
		data = strtoi(argv[2], &e, 0);
		if (*e)
			return EC_ERROR_PARAM2;

		if (argc == 4) {
			/* Third argument is rounding flag. */
			round = strtoi(argv[3], &e, 0);
			if (*e)
				return EC_ERROR_PARAM3;
		}

		/*
		 * Write new range, if it returns invalid arg, then return
		 * a parameter error.
		 */
		if (sensor->drv->set_range(sensor,
					   data,
					   round) == EC_ERROR_INVAL)
			return EC_ERROR_PARAM2;
	} else {
		sensor->drv->get_range(sensor, &data);
		ccprintf("Range for sensor %d: %d\n", id, data);
	}

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrange, command_accelrange,
	"id [data [roundup]]",
	"Read or write accelerometer range", NULL);

static int command_accelresolution(int argc, char **argv)
{
	char *e;
	int id, data, round = 1;
	struct motion_sensor_t *sensor;

	if (argc < 2 || argc > 4)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is sensor id. */
	id = strtoi(argv[1], &e, 0);
	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	sensor = &motion_sensors[id];

	if (argc >= 3) {
		/* Second argument is data to write. */
		data = strtoi(argv[2], &e, 0);
		if (*e)
			return EC_ERROR_PARAM2;

		if (argc == 4) {
			/* Third argument is rounding flag. */
			round = strtoi(argv[3], &e, 0);
			if (*e)
				return EC_ERROR_PARAM3;
		}

		/*
		 * Write new resolution, if it returns invalid arg, then
		 * return a parameter error.
		 */
		if (sensor->drv->set_resolution(sensor, data, round)
			== EC_ERROR_INVAL)
			return EC_ERROR_PARAM2;
	} else {
		sensor->drv->get_resolution(sensor, &data);
		ccprintf("Resolution for sensor %d: %d\n", id, data);
	}

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelres, command_accelresolution,
	"id [data [roundup]]",
	"Read or write accelerometer resolution", NULL);

static int command_accel_data_rate(int argc, char **argv)
{
	char *e;
	int id, data, round = 1;
	struct motion_sensor_t *sensor;

	if (argc < 2 || argc > 4)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is sensor id. */
	id = strtoi(argv[1], &e, 0);
	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	sensor = &motion_sensors[id];

	if (argc >= 3) {
		/* Second argument is data to write. */
		data = strtoi(argv[2], &e, 0);
		if (*e)
			return EC_ERROR_PARAM2;

		if (argc == 4) {
			/* Third argument is rounding flag. */
			round = strtoi(argv[3], &e, 0);
			if (*e)
				return EC_ERROR_PARAM3;
		}

		/*
		 * Write new data rate, if it returns invalid arg, then
		 * return a parameter error.
		 */
		if (sensor->drv->set_data_rate(sensor, data, round)
			== EC_ERROR_INVAL)
			return EC_ERROR_PARAM2;
	} else {
		sensor->drv->get_data_rate(sensor, &data);
		ccprintf("Data rate for sensor %d: %d\n", id, data);
	}

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrate, command_accel_data_rate,
	"id [data [roundup]]",
	"Read or write accelerometer ODR", NULL);

static int command_accel_read_xyz(int argc, char **argv)
{
	char *e;
	int id, x, y, z, n = 1;
	struct motion_sensor_t *sensor;

	if (argc < 2)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is sensor id. */
	id = strtoi(argv[1], &e, 0);

	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	if (argc >= 3)
		n = strtoi(argv[2], &e, 0);

	sensor = &motion_sensors[id];

	while ((n == -1) || (n-- > 0)) {
		sensor->drv->read(sensor, &x, &y, &z);
		ccprintf("Current raw data %d: %-5d %-5d %-5d\n", id, x, y, z);
		ccprintf("Last calib. data %d: %-5d %-5d %-5d\n", id,
			 sensor->xyz[X], sensor->xyz[Y], sensor->xyz[Z]);
		task_wait_event(MIN_MOTION_SENSE_WAIT_TIME);
	}
	return EC_SUCCESS;
}

DECLARE_CONSOLE_COMMAND(accelread, command_accel_read_xyz,
	"id [n]",
	"Read sensor x/y/z", NULL);

static int command_accel_init(int argc, char **argv)
{
	char *e;
	int id;
	struct motion_sensor_t *sensor;

	if (argc < 2)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is sensor id. */
	id = strtoi(argv[1], &e, 0);

	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	sensor = &motion_sensors[id];
	sensor->drv->init(sensor);
	ccprintf("%s\n", sensor->name);
	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinit, command_accel_init,
	"id",
	"Init sensor", NULL);

#ifdef CONFIG_ACCEL_INTERRUPTS
static int command_accelerometer_interrupt(int argc, char **argv)
{
	char *e;
	int id, thresh;
	struct motion_sensor_t *sensor;

	if (argc != 3)
		return EC_ERROR_PARAM_COUNT;

	/* First argument is id. */
	id = strtoi(argv[1], &e, 0);
	if (*e || id < 0 || id >= motion_sensor_count)
		return EC_ERROR_PARAM1;

	sensor = &motion_sensors[id];

	/* Second argument is interrupt threshold. */
	thresh = strtoi(argv[2], &e, 0);
	if (*e)
		return EC_ERROR_PARAM2;

	sensor->drv->set_interrupt(sensor, thresh);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelint, command_accelerometer_interrupt,
	"id threshold",
	"Write interrupt threshold", NULL);
#endif /* CONFIG_ACCEL_INTERRUPTS */

#endif /* CONFIG_CMD_ACCELS */