summaryrefslogtreecommitdiff
path: root/common/ocpc.c
blob: 2422fffc4328b49cb83d53dd1abc923c0186e8e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/* Copyright 2020 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* OCPC - One Charger IC Per Type-C module */

#include "battery.h"
#include "charge_state_v2.h"
#include "charger.h"
#include "common.h"
#include "console.h"
#include "hooks.h"
#include "math_util.h"
#include "ocpc.h"
#include "util.h"

/*
 * These constants were chosen by tuning the PID loop to reduce oscillations and
 * minimize overshoot.
 */
#define KP 1
#define KP_DIV 4
#define KI 1
#define KI_DIV 15
#define KD 1
#define KD_DIV 10

/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
#define CPRINTS(format, args...) cprints(CC_CHARGER, format, ## args)
#define CPRINTS_DBG(format, args...) \
do {							\
	if (debug_output)				\
		cprints(CC_CHARGER, format, ## args);	\
} while (0)

/* Code refactor will be needed if more than 2 charger chips are present */
BUILD_ASSERT(CHARGER_NUM == 2);

static int k_p = KP;
static int k_i = KI;
static int k_d = KD;
static int k_p_div = KP_DIV;
static int k_i_div = KI_DIV;
static int k_d_div = KD_DIV;
static int debug_output;

enum phase {
	PHASE_UNKNOWN = -1,
	PHASE_CC,
	PHASE_CV_TRIP,
	PHASE_CV_COMPLETE,
};

__overridable void board_ocpc_init(struct ocpc_data *ocpc)
{
}

enum ec_error_list ocpc_calc_resistances(struct ocpc_data *ocpc,
					 struct batt_params *battery)
{
	int act_chg = ocpc->active_chg_chip;

	if ((battery->current <= 0) ||
	    (!(ocpc->chg_flags[act_chg] & OCPC_NO_ISYS_MEAS_CAP) &&
	     (ocpc->isys_ma <= 0)) ||
	    (ocpc->vsys_aux_mv < ocpc->vsys_mv)) {
		CPRINTS_DBG("Not charging... won't determine resistance");
		CPRINTS_DBG("vsys_aux_mv: %dmV vsys_mv: %dmV",
			    ocpc->vsys_aux_mv, ocpc->vsys_mv);
		return EC_ERROR_INVALID_CONFIG; /* We must be charging */
	}

	/*
	 * The combined system and battery resistance is the delta between Vsys
	 * and Vbatt divided by Ibatt.
	 */
	if ((ocpc->chg_flags[act_chg] & OCPC_NO_ISYS_MEAS_CAP)) {
		/*
		 * There's no provision to measure Isys, so we cannot separate
		 * out Rsys from Rbatt.
		 */
		ocpc->combined_rsys_rbatt_mo = ((ocpc->vsys_aux_mv -
						 battery->voltage) * 1000) /
						 battery->current;
		CPRINTS_DBG("Rsys+Rbatt: %dmOhm", ocpc->combined_rsys_rbatt_mo);
	} else {
		ocpc->rsys_mo = ((ocpc->vsys_aux_mv - ocpc->vsys_mv) * 1000) /
				 ocpc->isys_ma;
		ocpc->rbatt_mo = ((ocpc->vsys_mv - battery->voltage) * 1000) /
				 battery->current;
		ocpc->combined_rsys_rbatt_mo = ocpc->rsys_mo + ocpc->rbatt_mo;
		CPRINTS_DBG("Rsys: %dmOhm Rbatt: %dmOhm", ocpc->rsys_mo,
			    ocpc->rbatt_mo);
	}
	return EC_SUCCESS;
}

int ocpc_config_secondary_charger(int *desired_input_current,
				  struct ocpc_data *ocpc,
				  int voltage_mv, int current_ma)
{
	int rv = EC_SUCCESS;
	struct batt_params batt;
	const struct battery_info *batt_info;
	struct charger_params charger;
	int vsys_target = 0;
	int drive = 0;
	int i_ma;
	int min_vsys_target;
	int error = 0;
	int derivative = 0;
	static enum phase ph;
	static int prev_limited;
	int chgnum;
	enum ec_error_list result;
	static int iterations;
	int i_step;

	/*
	 * There's nothing to do if we're not using this charger.  Should
	 * there be more than two charger ICs in the future, the following check
	 * should change to ensure that only the active charger IC is acted
	 * upon.
	 */
	chgnum = charge_get_active_chg_chip();
	if (chgnum != CHARGER_SECONDARY)
		return EC_ERROR_INVAL;

	result = charger_set_vsys_compensation(chgnum, ocpc, current_ma,
					       voltage_mv);
	switch (result) {
	case EC_SUCCESS:
		/* No further action required, so we're done here. */
		return EC_SUCCESS;

	case EC_ERROR_UNIMPLEMENTED:
		/* Let's get to work */
		break;

	default:
		/* Something went wrong configuring the auxiliary charger IC. */
		CPRINTS("Failed to set VSYS compensation! (%d) (result: %d)",
			chgnum, result);
		return result;
	}

	if (ocpc->last_vsys == OCPC_UNINIT) {
		ph = PHASE_UNKNOWN;
		iterations = 0;
	}

	if (current_ma == 0) {
		vsys_target = voltage_mv;
		goto set_vsys;
	}

	/*
	 * We need to induce a current flow that matches the requested current
	 * by raising VSYS.  Let's start by getting the latest data that we
	 * know of.
	 */
	batt_info = battery_get_info();
	battery_get_params(&batt);
	ocpc_get_adcs(ocpc);
	charger_get_params(&charger);


	/*
	 * If the system is in S5/G3, we can calculate the board and battery
	 * resistances.
	 */
	if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) {
		/*
		 * In the first few iterations of the loop, charging isn't
		 * stable/correct so making the calculation then leads to some
		 * strange values throwing off the loop even more. However,
		 * after those initial iterations it then begins to behave as
		 * expected. From there onwards, the resistance values aren't
		 * changing _too_ rapidly.  This is why we calculate with every
		 * modulo 4 interval.
		 */
		iterations++;
		if (!(iterations % 4))
			ocpc_calc_resistances(ocpc, &batt);
		iterations %= 5;
	}

	/* Set our current target accordingly. */
	if (batt.voltage < batt.desired_voltage) {
		if (ph < PHASE_CV_TRIP)
			ph = PHASE_CC;
		i_ma = batt.desired_current;
	} else{
		/*
		 * Once the battery voltage reaches the desired voltage, we
		 * should note that we've reached the CV step and set VSYS to
		 * the desired CV + offset.
		 */
		i_ma = batt.current;
		ph = ph == PHASE_CC ? PHASE_CV_TRIP : PHASE_CV_COMPLETE;

	}

	/* Ensure our target is not negative. */
	i_ma = MAX(i_ma, 0);

	/* Convert desired mA to what the charger could actually regulate to. */
	i_step = (int)charger_get_info()->current_step;
	i_ma = (i_ma / i_step) * i_step;

	/*
	 * We'll use our current target and our combined Rsys+Rbatt to seed our
	 * VSYS target.  However, we'll use a PID loop to correct the error and
	 * help drive VSYS to what it _should_ be in order to reach our current
	 * target.  The first time through this function, we won't make any
	 * corrections in order to determine our initial error.
	 */
	if (ocpc->last_vsys != OCPC_UNINIT) {
		error = i_ma - batt.current;
		/* Add some hysteresis. */
		if (ABS(error) < i_step)
			error = 0;

		derivative = error - ocpc->last_error;
		ocpc->last_error = error;
		ocpc->integral +=  error;
		if (ocpc->integral > 500)
			ocpc->integral = 500;
	}

	CPRINTS_DBG("phase = %d", ph);
	CPRINTS_DBG("error = %dmA", error);
	CPRINTS_DBG("derivative = %d", derivative);
	CPRINTS_DBG("integral = %d", ocpc->integral);
	CPRINTS_DBG("batt.voltage = %dmV", batt.voltage);
	CPRINTS_DBG("batt.desired_voltage = %dmV", batt.desired_voltage);
	CPRINTS_DBG("batt.desired_current = %dmA", batt.desired_current);
	CPRINTS_DBG("batt.current = %dmA", batt.current);
	CPRINTS_DBG("i_ma = %dmA", i_ma);

	min_vsys_target = MIN(batt.voltage, batt.desired_voltage);
	CPRINTS_DBG("min_vsys_target = %d", min_vsys_target);

	/* Obtain the drive from our PID controller. */
	if (ocpc->last_vsys != OCPC_UNINIT) {
		drive = (k_p * error / k_p_div) +
			(k_i * ocpc->integral / k_i_div) +
			(k_d * derivative / k_d_div);
		/*
		 * Let's limit upward transitions to 500mV.  It's okay to reduce
		 * VSYS rather quickly, but we'll be conservative on
		 * increasing VSYS.
		 */
		if (drive > 500)
			drive = 500;
		CPRINTS_DBG("drive = %d", drive);
	}

	/*
	 * Adjust our VSYS target by applying the calculated drive.  Note that
	 * we won't apply our drive the first time through this function such
	 * that we can determine our initial error.
	 */
	if (ocpc->last_vsys != OCPC_UNINIT)
		vsys_target = ocpc->last_vsys + drive;

	/*
	 * Once we're in the CV region, all we need to do is keep VSYS at the
	 * desired voltage.
	 */
	if (ph >= PHASE_CV_TRIP)
		vsys_target = batt.desired_voltage;

	/*
	 * Ensure VSYS is no higher than 1V over the max battery voltage, but
	 * greater than or equal to our minimum VSYS target.
	 */
	vsys_target = CLAMP(vsys_target, min_vsys_target,
			    batt_info->voltage_max+1000);

	/* If we're input current limited, we cannot increase VSYS any more. */
	CPRINTS_DBG("OCPC: Inst. Input Current: %dmA (Limit: %dmA)",
		    ocpc->secondary_ibus_ma, *desired_input_current);
	if ((ocpc->secondary_ibus_ma >= (*desired_input_current * 95 / 100)) &&
	    (vsys_target > ocpc->last_vsys) &&
	    (ocpc->last_vsys != OCPC_UNINIT)) {
		if (!prev_limited)
			CPRINTS("Input limited! Not increasing VSYS");
		prev_limited = 1;
		return rv;
	}
	prev_limited = 0;

set_vsys:
	/* To reduce spam, only print when we change VSYS significantly. */
	if ((ABS(vsys_target - ocpc->last_vsys) > 10) || debug_output)
		CPRINTS("OCPC: Target VSYS: %dmV", vsys_target);
	charger_set_voltage(CHARGER_SECONDARY, vsys_target);
	ocpc->last_vsys = vsys_target;

	return rv;
}

void ocpc_get_adcs(struct ocpc_data *ocpc)
{
	int val;

	val = 0;
	if (!charger_get_vbus_voltage(CHARGER_PRIMARY, &val))
		ocpc->primary_vbus_mv = val;

	val = 0;
	if (!charger_get_input_current(CHARGER_PRIMARY, &val))
		ocpc->primary_ibus_ma = val;

	val = 0;
	if (!charger_get_voltage(CHARGER_PRIMARY, &val))
		ocpc->vsys_mv = val;

	if (board_get_charger_chip_count() <= CHARGER_SECONDARY) {
		ocpc->secondary_vbus_mv = 0;
		ocpc->secondary_ibus_ma = 0;
		ocpc->vsys_aux_mv = 0;
		ocpc->isys_ma = 0;
		return;
	}

	val = 0;
	if (!charger_get_vbus_voltage(CHARGER_SECONDARY, &val))
		ocpc->secondary_vbus_mv = val;

	val = 0;
	if (!charger_get_input_current(CHARGER_SECONDARY, &val))
		ocpc->secondary_ibus_ma = val;

	val = 0;
	if (!charger_get_voltage(CHARGER_SECONDARY, &val))
		ocpc->vsys_aux_mv = val;

	val = 0;
	if (!charger_get_current(CHARGER_SECONDARY, &val))
		ocpc->isys_ma = val;
}

__overridable void ocpc_get_pid_constants(int *kp, int *kp_div,
					  int *ki, int *ki_div,
					  int *kd, int *kd_div)
{
}

static void ocpc_set_pid_constants(void)
{
	ocpc_get_pid_constants(&k_p, &k_p_div, &k_i, &k_i_div, &k_d, &k_d_div);
}
DECLARE_HOOK(HOOK_INIT, ocpc_set_pid_constants, HOOK_PRIO_DEFAULT);

void ocpc_init(struct ocpc_data *ocpc)
{
	/*
	 * We can start off assuming that the board resistance is 0 ohms
	 * and later on, we can update this value if we charge the
	 * system in suspend or off.
	 */
	ocpc->combined_rsys_rbatt_mo = CONFIG_OCPC_DEF_RBATT_MOHMS;
	ocpc->rbatt_mo = CONFIG_OCPC_DEF_RBATT_MOHMS;

	board_ocpc_init(ocpc);
}

static int command_ocpcdebug(int argc, char **argv)
{
	if (argc < 2)
		return EC_ERROR_PARAM_COUNT;

	if (!parse_bool(argv[1], &debug_output))
		return EC_ERROR_PARAM1;

	return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(ocpcdebug, command_ocpcdebug,
			     "<enable/disable>",
			     "enable/disable debug prints for OCPC data");

static int command_ocpcpid(int argc, char **argv)
{
	int *num, *denom;

	if (argc == 4) {
		switch (argv[1][0]) {
		case 'p':
			num = &k_p;
			denom = &k_p_div;
			break;

		case 'i':
			num = &k_i;
			denom = &k_i_div;
			break;

		case 'd':
			num = &k_d;
			denom = &k_d_div;
			break;
		default:
			return EC_ERROR_PARAM1;
		}

		*num = atoi(argv[2]);
		*denom = atoi(argv[3]);
	}

	/* Print the current constants */
	ccprintf("Kp = %d / %d\n", k_p, k_p_div);
	ccprintf("Ki = %d / %d\n", k_i, k_i_div);
	ccprintf("Kd = %d / %d\n", k_d, k_d_div);
	return EC_SUCCESS;
}
DECLARE_SAFE_CONSOLE_COMMAND(ocpcpid, command_ocpcpid,
			     "[<k/p/d> <numerator> <denominator>]",
			     "Show/Set PID constants for OCPC PID loop");