summaryrefslogtreecommitdiff
path: root/common/pinweaver.c
blob: 63e1a4522e580cf55ed5bc3a2713ce93594946e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <common.h>
#include <console.h>
#include <dcrypto.h>
#include <pinweaver.h>
#include <pinweaver_tpm_imports.h>
#include <pinweaver_types.h>
#include <timer.h>
#include <trng.h>
#include <tpm_registers.h>
#include <util.h>

/* Compile time sanity checks. */
/* Make sure the hash size is consistent with dcrypto. */
BUILD_ASSERT(PW_HASH_SIZE >= SHA256_DIGEST_SIZE);

/* sizeof(struct leaf_data_t) % 16 should be zero */
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) % PW_WRAP_BLOCK_SIZE == 0);

BUILD_ASSERT(sizeof(((struct merkle_tree_t *)0)->wrap_key) ==
	     AES256_BLOCK_CIPHER_KEY_SIZE);

/* Verify that the request structs will fit into the message. */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >=
	     sizeof(struct pw_request_header_t) +
	     sizeof(union {struct pw_request_insert_leaf_t insert_leaf;
		     struct pw_request_remove_leaf_t remove_leaf;
		     struct pw_request_try_auth_t try_auth;
		     struct pw_request_reset_auth_t reset_auth; }) +
	     sizeof(struct leaf_public_data_t) +
	     sizeof(struct leaf_sensitive_data_t) +
	     PW_MAX_PATH_SIZE);

/* Verify that the request structs will fit into the message. */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE >=
	     sizeof(struct pw_response_header_t) +
	     sizeof(union {struct pw_response_insert_leaf_t insert_leaf;
		     struct pw_response_try_auth_t try_auth;
		     struct pw_response_reset_auth_t reset_auth; }) +
	     PW_LEAF_PAYLOAD_SIZE);
/* Make sure the largest possible message would fit in
 * (struct tpm_register_file).data_fifo.
 */
BUILD_ASSERT(PW_MAX_MESSAGE_SIZE + sizeof(struct tpm_cmd_header) <= 2048);

/* PW_MAX_PATH_SIZE should not change unless PW_LEAF_MAJOR_VERSION changes too.
 * Update these statements whenever these constants are changed to remind future
 * maintainers about this requirement.
 *
 * This requirement helps guarantee that forward compatibility across the same
 * PW_LEAF_MAJOR_VERSION doesn't break because of a path length becoming too
 * long after new fields are added to struct wrapped_leaf_data_t or its sub
 * fields.
 */
BUILD_ASSERT(PW_LEAF_MAJOR_VERSION == 0);
BUILD_ASSERT(PW_MAX_PATH_SIZE == 1536);

/* If fields are appended to struct leaf_sensitive_data_t, an encryption
 * operation should be performed on them reusing the same IV since the prefix
 * won't change.
 *
 * If any data in the original struct leaf_sensitive_data_t changes, a new IV
 * should be generated and stored as part of the log for a replay to be
 * possible.
 */
BUILD_ASSERT(sizeof(struct leaf_sensitive_data_t) == 3 * PW_SECRET_SIZE);

/******************************************************************************/
/* Struct helper functions.
 */

void import_leaf(const struct unimported_leaf_data_t *unimported,
		 struct imported_leaf_data_t *imported)
{
	imported->head = &unimported->head;
	imported->hmac = unimported->hmac;
	imported->iv = unimported->iv;
	imported->pub = (const struct leaf_public_data_t *)unimported->payload;
	imported->cipher_text = unimported->payload + unimported->head.pub_len;
	imported->hashes = (const uint8_t (*)[PW_HASH_SIZE])(
			imported->cipher_text + unimported->head.sec_len);
}

/******************************************************************************/
/* Basic operations required by the Merkle tree.
 */

static int derive_keys(struct merkle_tree_t *merkle_tree)
{
	struct APPKEY_CTX ctx;
	int ret = EC_SUCCESS;
	const uint32_t KEY_TYPE_AES = 0x0;
	const uint32_t KEY_TYPE_HMAC = 0xffffffff;
	union {
		uint32_t v[8];
		uint8_t bytes[sizeof(uint32_t) * 8];
	} input;
	uint32_t type_field;
	size_t seed_size = sizeof(input);
	size_t x;

	get_storage_seed(input.v, &seed_size);
	for (x = 0; x < ARRAY_SIZE(input.bytes) &&
		    x < ARRAY_SIZE(merkle_tree->key_derivation_nonce); ++x)
		input.bytes[x] ^= merkle_tree->key_derivation_nonce[x];
	type_field = input.v[6];

	if (!DCRYPTO_appkey_init(PINWEAVER, &ctx))
		return PW_ERR_CRYPTO_FAILURE;

	input.v[6] = type_field ^ KEY_TYPE_AES;
	if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
				  (uint32_t *)merkle_tree->wrap_key)) {
		ret = PW_ERR_CRYPTO_FAILURE;
		goto cleanup;
	}

	input.v[6] = type_field ^ KEY_TYPE_HMAC;
	if (!DCRYPTO_appkey_derive(PINWEAVER, input.v,
				  (uint32_t *)merkle_tree->hmac_key)) {
		ret = PW_ERR_CRYPTO_FAILURE;
	}
cleanup:
	DCRYPTO_appkey_finish(&ctx);
	return ret;
}

/* Creates an empty merkle_tree with the given parameters. */
static int create_merkle_tree(struct bits_per_level_t bits_per_level,
			      struct height_t height,
			      struct merkle_tree_t *merkle_tree)
{
	uint16_t fan_out = 1 << bits_per_level.v;
	uint8_t temp_hash[PW_HASH_SIZE] = {};
	uint8_t hx;
	uint16_t kx;
	LITE_SHA256_CTX ctx;

	merkle_tree->bits_per_level = bits_per_level;
	merkle_tree->height = height;

	/* Initialize the root hash. */
	for (hx = 0; hx < height.v; ++hx) {
		DCRYPTO_SHA256_init(&ctx, 0);
		for (kx = 0; kx < fan_out; ++kx)
			HASH_update(&ctx, temp_hash, PW_HASH_SIZE);
		memcpy(temp_hash, HASH_final(&ctx), PW_HASH_SIZE);
	}
	memcpy(merkle_tree->root, temp_hash, PW_HASH_SIZE);

	rand_bytes(merkle_tree->key_derivation_nonce,
		   sizeof(merkle_tree->key_derivation_nonce));
	return derive_keys(merkle_tree);
}

/* Computes the HMAC for an encrypted leaf using the key in the merkle_tree. */
static void compute_hmac(
		const struct merkle_tree_t *merkle_tree,
		const struct imported_leaf_data_t *imported_leaf_data,
		uint8_t result[PW_HASH_SIZE])
{
	LITE_HMAC_CTX hmac;

	DCRYPTO_HMAC_SHA256_init(&hmac, merkle_tree->hmac_key,
				 sizeof(merkle_tree->hmac_key));
	HASH_update(&hmac.hash, imported_leaf_data->head,
		    sizeof(*imported_leaf_data->head));
	HASH_update(&hmac.hash, imported_leaf_data->iv,
		    sizeof(PW_WRAP_BLOCK_SIZE));
	HASH_update(&hmac.hash, imported_leaf_data->pub,
		    imported_leaf_data->head->pub_len);
	HASH_update(&hmac.hash, imported_leaf_data->cipher_text,
		    imported_leaf_data->head->sec_len);
	memcpy(result, DCRYPTO_HMAC_final(&hmac), PW_HASH_SIZE);
}

/* Computes the root hash for the specified path and child hash. */
static void compute_root_hash(const struct merkle_tree_t *merkle_tree,
			      struct label_t path,
			      const uint8_t hashes[][PW_HASH_SIZE],
			      const uint8_t child_hash[PW_HASH_SIZE],
			      uint8_t new_root[PW_HASH_SIZE])
{
	/* This is one less than the fan out, the number of sibling hashes. */
	const uint16_t num_aux = (1 << merkle_tree->bits_per_level.v) - 1;
	const uint16_t path_suffix_mask = num_aux;
	uint8_t temp_hash[PW_HASH_SIZE];
	uint8_t hx = 0;
	uint64_t index = path.v;

	compute_hash(hashes, num_aux,
		     (struct index_t){index & path_suffix_mask},
		     child_hash, temp_hash);
	for (hx = 1; hx < merkle_tree->height.v; ++hx) {
		hashes += num_aux;
		index = index >> merkle_tree->bits_per_level.v;
		compute_hash(hashes, num_aux,
			     (struct index_t){index & path_suffix_mask},
			     temp_hash, temp_hash);
	}
	memcpy(new_root, temp_hash, sizeof(temp_hash));
}

/* Checks to see the specified path is valid. The length of the path should be
 * validated prior to calling this function.
 *
 * Returns 0 on success or an error code otherwise.
 */
static int authenticate_path(const struct merkle_tree_t *merkle_tree,
			     struct label_t path,
			     const uint8_t hashes[][PW_HASH_SIZE],
			     const uint8_t child_hash[PW_HASH_SIZE])
{
	uint8_t parent[PW_HASH_SIZE];

	compute_root_hash(merkle_tree, path, hashes, child_hash, parent);
	if (memcmp(parent, merkle_tree->root, sizeof(parent)) != 0)
		return PW_ERR_PATH_AUTH_FAILED;
	return EC_SUCCESS;
}

static void init_wrapped_leaf_data(
		struct wrapped_leaf_data_t *wrapped_leaf_data)
{
	wrapped_leaf_data->head.leaf_version.major = PW_LEAF_MAJOR_VERSION;
	wrapped_leaf_data->head.leaf_version.minor = PW_LEAF_MINOR_VERSION;
	wrapped_leaf_data->head.pub_len = sizeof(wrapped_leaf_data->pub);
	wrapped_leaf_data->head.sec_len =
			sizeof(wrapped_leaf_data->cipher_text);
}

/* Encrypts the leaf meta data. */
static int encrypt_leaf_data(const struct merkle_tree_t *merkle_tree,
			     const struct leaf_data_t *leaf_data,
			     struct wrapped_leaf_data_t *wrapped_leaf_data)
{
	/* Generate a random IV.
	 *
	 * If fields are appended to struct leaf_sensitive_data_t, an encryption
	 * operation should be performed on them reusing the same IV since the
	 * prefix won't change.
	 *
	 * If any data of in the original struct leaf_sensitive_data_t changes,
	 * a new IV should be generated and stored as part of the log for a
	 * replay to be possible.
	 */
	rand_bytes(wrapped_leaf_data->iv, sizeof(wrapped_leaf_data->iv));
	memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
	       sizeof(leaf_data->pub));
	if (!DCRYPTO_aes_ctr(wrapped_leaf_data->cipher_text,
			    merkle_tree->wrap_key,
			    sizeof(merkle_tree->wrap_key) << 3,
			    wrapped_leaf_data->iv, (uint8_t *)&leaf_data->sec,
			    sizeof(leaf_data->sec))) {
		return PW_ERR_CRYPTO_FAILURE;
	}
	return EC_SUCCESS;
}

/* Decrypts the leaf meta data. */
static int decrypt_leaf_data(
		const struct merkle_tree_t *merkle_tree,
		const struct imported_leaf_data_t *imported_leaf_data,
		struct leaf_data_t *leaf_data)
{
	memcpy(&leaf_data->pub, imported_leaf_data->pub,
	       sizeof(leaf_data->pub));
	if (!DCRYPTO_aes_ctr((uint8_t *)&leaf_data->sec, merkle_tree->wrap_key,
			    sizeof(merkle_tree->wrap_key) << 3,
			    imported_leaf_data->iv,
			    imported_leaf_data->cipher_text,
			    sizeof(leaf_data->sec))) {
		return PW_ERR_CRYPTO_FAILURE;
	}
	return EC_SUCCESS;
}

static int handle_leaf_update(
		const struct merkle_tree_t *merkle_tree,
		const struct leaf_data_t *leaf_data,
		const uint8_t hashes[][PW_HASH_SIZE],
		struct wrapped_leaf_data_t *wrapped_leaf_data,
		uint8_t new_root[PW_HASH_SIZE],
		const struct imported_leaf_data_t *optional_old_wrapped_data)
{
	int ret;
	struct imported_leaf_data_t ptrs;

	init_wrapped_leaf_data(wrapped_leaf_data);
	if (optional_old_wrapped_data == NULL) {
		ret = encrypt_leaf_data(merkle_tree, leaf_data,
					wrapped_leaf_data);
		if (ret != EC_SUCCESS)
			return ret;
	} else {
		memcpy(wrapped_leaf_data->iv, optional_old_wrapped_data->iv,
		       sizeof(wrapped_leaf_data->iv));
		memcpy(&wrapped_leaf_data->pub, &leaf_data->pub,
		       sizeof(leaf_data->pub));
		memcpy(wrapped_leaf_data->cipher_text,
		       optional_old_wrapped_data->cipher_text,
		       sizeof(wrapped_leaf_data->cipher_text));
	}

	import_leaf((const struct unimported_leaf_data_t *)wrapped_leaf_data,
		    &ptrs);
	compute_hmac(merkle_tree, &ptrs, wrapped_leaf_data->hmac);

	compute_root_hash(merkle_tree, leaf_data->pub.label,
			  hashes, wrapped_leaf_data->hmac,
			  new_root);

	return EC_SUCCESS;
}

/******************************************************************************/
/* Parameter and state validation functions.
 */

static int validate_tree_parameters(struct bits_per_level_t bits_per_level,
				    struct height_t height)
{
	uint8_t fan_out = 1 << bits_per_level.v;

	if (bits_per_level.v < BITS_PER_LEVEL_MIN ||
	    bits_per_level.v > BITS_PER_LEVEL_MAX)
		return PW_ERR_BITS_PER_LEVEL_INVALID;

	if (height.v < HEIGHT_MIN ||
	    height.v > HEIGHT_MAX(bits_per_level.v) ||
	    ((fan_out - 1) * height.v) * PW_HASH_SIZE > PW_MAX_PATH_SIZE)
		return PW_ERR_HEIGHT_INVALID;

	return EC_SUCCESS;
}

/* Verifies that merkle_tree has been initialized. */
static int validate_tree(const struct merkle_tree_t *merkle_tree)
{
	if (validate_tree_parameters(merkle_tree->bits_per_level,
				     merkle_tree->height) != EC_SUCCESS)
		return PW_ERR_TREE_INVALID;
	return EC_SUCCESS;
}

/* Checks the following conditions:
 * Extra index fields should be all zero.
 */
static int validate_label(const struct merkle_tree_t *merkle_tree,
			  struct label_t path)
{
	uint8_t shift_by = merkle_tree->bits_per_level.v *
			   merkle_tree->height.v;

	if ((path.v >> shift_by) == 0)
		return EC_SUCCESS;
	return PW_ERR_LABEL_INVALID;
}

/* Checks the following conditions:
 * Columns should be strictly increasing.
 * Zeroes for filler at the end of the delay_schedule are permitted.
 */
static int validate_delay_schedule(const struct delay_schedule_entry_t
				   delay_schedule[PW_SCHED_COUNT])
{
	size_t x;

	/* The first entry should not be useless. */
	if (delay_schedule[0].time_diff.v == 0)
		return PW_ERR_DELAY_SCHEDULE_INVALID;

	for (x = PW_SCHED_COUNT - 1; x > 0; --x) {
		if (delay_schedule[x].attempt_count.v == 0) {
			if (delay_schedule[x].time_diff.v != 0)
				return PW_ERR_DELAY_SCHEDULE_INVALID;
		} else if (delay_schedule[x].attempt_count.v <=
				delay_schedule[x - 1].attempt_count.v ||
				delay_schedule[x].time_diff.v <=
				delay_schedule[x - 1].time_diff.v) {
			return PW_ERR_DELAY_SCHEDULE_INVALID;
		}
	}
	return EC_SUCCESS;
}

static int validate_leaf_header(const struct leaf_header_t *head,
				uint16_t payload_len, uint16_t aux_hash_len)
{
	uint32_t leaf_payload_len = head->pub_len + head->sec_len;

	if (head->leaf_version.major != PW_LEAF_MAJOR_VERSION)
		return PW_ERR_LEAF_VERSION_MISMATCH;

	if (head->leaf_version.minor == PW_LEAF_MINOR_VERSION) {
		if (leaf_payload_len != PW_LEAF_PAYLOAD_SIZE)
			return PW_ERR_LENGTH_INVALID;
	} else if (leaf_payload_len < PW_LEAF_PAYLOAD_SIZE)
		return PW_ERR_LENGTH_INVALID;

	if (payload_len != leaf_payload_len + aux_hash_len * PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	return EC_SUCCESS;
}

/* Common validation for requests that include a path to authenticate. */
static int validate_request_with_path(const struct merkle_tree_t *merkle_tree,
				      struct label_t path,
				      const uint8_t hashes[][PW_HASH_SIZE],
				      const uint8_t hmac[PW_HASH_SIZE])
{
	int ret;

	ret = validate_tree(merkle_tree);
	if (ret != EC_SUCCESS)
		return ret;

	ret = validate_label(merkle_tree, path);
	if (ret != EC_SUCCESS)
		return ret;

	return authenticate_path(merkle_tree, path, hashes, hmac);
}

/* Common validation for requests that import a leaf. */
static int validate_request_with_wrapped_leaf(
		const struct merkle_tree_t *merkle_tree,
		uint16_t payload_len,
		const struct unimported_leaf_data_t *unimported_leaf_data,
		struct imported_leaf_data_t *imported_leaf_data,
		struct leaf_data_t *leaf_data)
{
	int ret;
	uint8_t hmac[PW_HASH_SIZE];

	ret = validate_leaf_header(&unimported_leaf_data->head, payload_len,
				   get_path_auxiliary_hash_count(merkle_tree));
	if (ret != EC_SUCCESS)
		return ret;

	import_leaf(unimported_leaf_data, imported_leaf_data);
	ret = validate_request_with_path(merkle_tree,
					 imported_leaf_data->pub->label,
					 imported_leaf_data->hashes,
					 imported_leaf_data->hmac);
	if (ret != EC_SUCCESS)
		return ret;

	compute_hmac(merkle_tree, imported_leaf_data, hmac);
	/* Safe memcmp is used here to prevent an attacker from being able to
	 * brute force a valid HMAC for a crafted wrapped_leaf_data.
	 * memcmp provides an attacker a timing side-channel they can use to
	 * determine how much of a prefix is correct.
	 */
	if (safe_memcmp(hmac, unimported_leaf_data->hmac, sizeof(hmac)))
		return PW_ERR_HMAC_AUTH_FAILED;

	return decrypt_leaf_data(merkle_tree, imported_leaf_data, leaf_data);
}

/* Sets the value of ts to the current notion of time. */
static void update_timestamp(struct pw_timestamp_t *ts)
{
	ts->timer_value = get_time().val / SECOND;
	ts->boot_count = get_restart_count();
}

/* Checks if an auth attempt can be made or not based on the delay schedule.
 * EC_SUCCESS is returned when a new attempt can be made otherwise
 * seconds_to_wait will be updated with the remaining wait time required.
 */
static int test_rate_limit(struct leaf_data_t *leaf_data,
			   struct time_diff_t *seconds_to_wait)
{
	uint64_t ready_time;
	uint8_t x;
	struct pw_timestamp_t current_time;
	struct time_diff_t delay = {0};

	/* This loop ends when x is one greater than the index that applies. */
	for (x = 0; x < ARRAY_SIZE(leaf_data->pub.delay_schedule); ++x) {
		/* Stop if a null entry is reached. The first part of the delay
		 * schedule has a list of increasing (attempt_count, time_diff)
		 * pairs with any unused entries zeroed out at the end.
		 */
		if (leaf_data->pub.delay_schedule[x].attempt_count.v == 0)
			break;

		/* Stop once a delay schedule entry is reached whose
		 * threshold is greater than the current number of
		 * attempts.
		 */
		if (leaf_data->pub.attempt_count.v <
		    leaf_data->pub.delay_schedule[x].attempt_count.v)
			break;
	}

	/* If the first threshold was greater than the current number of
	 * attempts, there is no delay. Otherwise, grab the delay from the
	 * entry prior to the one that was too big.
	 */
	if (x > 0)
		delay = leaf_data->pub.delay_schedule[x - 1].time_diff;

	if (delay.v == 0)
		return EC_SUCCESS;

	if (delay.v == PW_BLOCK_ATTEMPTS) {
		seconds_to_wait->v = PW_BLOCK_ATTEMPTS;
		return PW_ERR_RATE_LIMIT_REACHED;
	}

	update_timestamp(&current_time);

	if (leaf_data->pub.timestamp.boot_count == current_time.boot_count)
		ready_time = delay.v + leaf_data->pub.timestamp.timer_value;
	else
		ready_time = delay.v;

	if (current_time.timer_value >= ready_time)
		return EC_SUCCESS;

	seconds_to_wait->v = ready_time - current_time.timer_value;
	return PW_ERR_RATE_LIMIT_REACHED;
}

/******************************************************************************/
/* Per-request-type handler implementations.
 */

static int pw_handle_reset_tree(struct merkle_tree_t *merkle_tree,
				const struct pw_request_reset_tree_t *request,
				uint16_t req_size)
{
	struct merkle_tree_t new_tree = {};
	int ret;

	if (req_size != sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_tree_parameters(request->bits_per_level,
				       request->height);
	if (ret != EC_SUCCESS)
		return ret;

	ret = create_merkle_tree(request->bits_per_level, request->height,
				 &new_tree);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree, &new_tree, sizeof(new_tree));
	return EC_SUCCESS;
}

static int pw_handle_insert_leaf(struct merkle_tree_t *merkle_tree,
				 const struct pw_request_insert_leaf_t *request,
				 uint16_t req_size,
				 struct pw_response_insert_leaf_t *response,
				 uint16_t *response_size)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct wrapped_leaf_data_t wrapped_leaf_data;
	const uint8_t empty_hash[PW_HASH_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size != sizeof(*request) +
			get_path_auxiliary_hash_count(merkle_tree) *
			PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_path(merkle_tree, request->label,
					 request->path_hashes, empty_hash);
	if (ret != EC_SUCCESS)
		return ret;

	ret = validate_delay_schedule(request->delay_schedule);
	if (ret != EC_SUCCESS)
		return ret;

	memset(&leaf_data, 0, sizeof(leaf_data));
	leaf_data.pub.label.v = request->label.v;
	memcpy(&leaf_data.pub.delay_schedule, &request->delay_schedule,
	       sizeof(request->delay_schedule));
	memcpy(&leaf_data.sec.low_entropy_secret, &request->low_entropy_secret,
	       sizeof(request->low_entropy_secret));
	memcpy(&leaf_data.sec.high_entropy_secret,
	       &request->high_entropy_secret,
	       sizeof(request->high_entropy_secret));
	memcpy(&leaf_data.sec.reset_secret, &request->reset_secret,
	       sizeof(request->reset_secret));

	ret = handle_leaf_update(merkle_tree, &leaf_data, request->path_hashes,
				 &wrapped_leaf_data, new_root, NULL);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;

	return ret;
}

static int pw_handle_remove_leaf(struct merkle_tree_t *merkle_tree,
				 const struct pw_request_remove_leaf_t *request,
				 uint16_t req_size)
{
	int ret = EC_SUCCESS;
	const uint8_t empty_hash[PW_HASH_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size != sizeof(*request) +
			get_path_auxiliary_hash_count(merkle_tree) *
			PW_HASH_SIZE)
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_path(merkle_tree, request->leaf_location,
					 request->path_hashes,
					 request->leaf_hmac);
	if (ret != EC_SUCCESS)
		return ret;

	compute_root_hash(merkle_tree, request->leaf_location,
			  request->path_hashes, empty_hash, new_root);

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	return ret;
}

/* Processes a try_auth request.
 *
 * The valid fields in response based on return code are:
 *   EC_SUCCESS                 ->  unimported_leaf_data and high_entropy_secret
 *   PW_ERR_RATE_LIMIT_REACHED  ->  seconds_to_wait
 *   PW_ERR_LOWENT_AUTH_FAILED  ->  unimported_leaf_data
 */
static int pw_handle_try_auth(struct merkle_tree_t *merkle_tree,
			      const struct pw_request_try_auth_t *request,
			      uint16_t req_size,
			      struct pw_response_try_auth_t *response,
			      uint16_t *data_length)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct imported_leaf_data_t imported_leaf_data;
	struct wrapped_leaf_data_t wrapped_leaf_data;
	struct time_diff_t seconds_to_wait;
	uint8_t zeros[PW_SECRET_SIZE] = {};
	uint8_t new_root[PW_HASH_SIZE];

	/* These variables help eliminate the possibility of a timing side
	 * channel that would allow an attacker to prevent the log write.
	 */
	volatile int auth_result;

	volatile struct {
		uint32_t attempts;
		int ret;
		uint8_t *secret;
	} results_table[2] = {
			{ 0, PW_ERR_LOWENT_AUTH_FAILED, zeros },
			{ 0, EC_SUCCESS, leaf_data.sec.high_entropy_secret },
	};

	if (req_size < sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_wrapped_leaf(
			merkle_tree, req_size - sizeof(*request),
			&request->unimported_leaf_data, &imported_leaf_data,
			&leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	ret = test_rate_limit(&leaf_data, &seconds_to_wait);
	if (ret != EC_SUCCESS) {
		*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
		memset(response, 0, *data_length);
		memcpy(&response->seconds_to_wait, &seconds_to_wait,
		       sizeof(seconds_to_wait));
		return ret;
	}

	update_timestamp(&leaf_data.pub.timestamp);

	/* Precompute the failed attempts. */
	results_table[0].attempts = leaf_data.pub.attempt_count.v;
	if (results_table[0].attempts != UINT32_MAX)
		++results_table[0].attempts;

	/**********************************************************************/
	/* After this:
	 * 1) results_table should not be changed;
	 * 2) the runtime of the code paths for failed and successful
	 *    authentication attempts should not diverge.
	 */
	auth_result = safe_memcmp(request->low_entropy_secret,
				  leaf_data.sec.low_entropy_secret,
				  sizeof(request->low_entropy_secret)) == 0;
	leaf_data.pub.attempt_count.v = results_table[auth_result].attempts;

	/* This has a non-constant time path, but it doesn't convey information
	 * about whether a PW_ERR_LOWENT_AUTH_FAILED happened or not.
	 */
	ret = handle_leaf_update(merkle_tree, &leaf_data,
				 imported_leaf_data.hashes, &wrapped_leaf_data,
				 new_root, &imported_leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	*data_length = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;
	memset(response, 0, *data_length);

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	memcpy(&response->high_entropy_secret,
	       results_table[auth_result].secret,
	       sizeof(response->high_entropy_secret));

	return results_table[auth_result].ret;
}

static int pw_handle_reset_auth(struct merkle_tree_t *merkle_tree,
				const struct pw_request_reset_auth_t *request,
				uint16_t req_size,
				struct pw_response_reset_auth_t *response,
				uint16_t *response_size)
{
	int ret = EC_SUCCESS;
	struct leaf_data_t leaf_data = {};
	struct imported_leaf_data_t imported_leaf_data;
	struct wrapped_leaf_data_t wrapped_leaf_data;
	uint8_t new_root[PW_HASH_SIZE];

	if (req_size < sizeof(*request))
		return PW_ERR_LENGTH_INVALID;

	ret = validate_request_with_wrapped_leaf(
			merkle_tree, req_size - sizeof(*request),
			&request->unimported_leaf_data, &imported_leaf_data,
			&leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	/* Safe memcmp is used here to prevent an attacker from being able to
	 * brute force the reset secret and use it to unlock the leaf.
	 * memcmp provides an attacker a timing side-channel they can use to
	 * determine how much of a prefix is correct.
	 */
	if (safe_memcmp(request->reset_secret,
			leaf_data.sec.reset_secret,
			sizeof(request->reset_secret)) != 0)
		return PW_ERR_RESET_AUTH_FAILED;

	leaf_data.pub.attempt_count.v = 0;

	ret = handle_leaf_update(merkle_tree, &leaf_data,
				 imported_leaf_data.hashes, &wrapped_leaf_data,
				 new_root, &imported_leaf_data);
	if (ret != EC_SUCCESS)
		return ret;

	memcpy(merkle_tree->root, new_root, sizeof(new_root));

	memcpy(&response->unimported_leaf_data, &wrapped_leaf_data,
	       sizeof(wrapped_leaf_data));

	memcpy(response->high_entropy_secret,
	       leaf_data.sec.high_entropy_secret,
	       sizeof(response->high_entropy_secret));

	*response_size = sizeof(*response) + PW_LEAF_PAYLOAD_SIZE;

	return ret;
}

/******************************************************************************/
/* Non-static functions.
 */

int get_path_auxiliary_hash_count(const struct merkle_tree_t *merkle_tree)
{
	return ((1 << merkle_tree->bits_per_level.v) - 1) *
			merkle_tree->height.v;
}

/* Computes the SHA256 parent hash of a set of child hashes given num_hashes
 * sibling hashes in hashes[] and the index of child_hash.
 *
 * Assumptions:
 * num_hashes == fan_out - 1
 * ARRAY_SIZE(hashes) == num_hashes
 * 0 <= location <= num_hashes
 */
void compute_hash(const uint8_t hashes[][PW_HASH_SIZE], uint16_t num_hashes,
		  struct index_t location,
		  const uint8_t child_hash[PW_HASH_SIZE],
		  uint8_t result[PW_HASH_SIZE])
{
	LITE_SHA256_CTX ctx;

	DCRYPTO_SHA256_init(&ctx, 0);
	if (location.v > 0)
		HASH_update(&ctx, hashes[0], PW_HASH_SIZE * location.v);
	HASH_update(&ctx, child_hash, PW_HASH_SIZE);
	if (location.v < num_hashes)
		HASH_update(&ctx, hashes[location.v],
			    PW_HASH_SIZE * (num_hashes - location.v));
	memcpy(result, HASH_final(&ctx), PW_HASH_SIZE);
}

/* Handles the message in request using the context in merkle_tree and writes
 * the results to response. The return value captures any error conditions that
 * occurred or EC_SUCCESS if there were no errors.
 *
 * This implementation is written to handle the case where request and response
 * exist at the same memory location---are backed by the same buffer. This means
 * the implementation requires that no reads are made to request after response
 * has been written to.
 */
int pw_handle_request(struct merkle_tree_t *merkle_tree,
		      const struct pw_request_t *request,
		      struct pw_response_t *response)
{
	int32_t ret;
	uint16_t resp_length;
	/* Store the message type of the request since it may be overwritten
	 * inside the switch whenever response and request overlap in memory.
	 */
	struct pw_message_type_t type = request->header.type;

	resp_length = 0;

	if (request->header.version != PW_PROTOCOL_VERSION) {
		ret = PW_ERR_VERSION_MISMATCH;
		goto cleanup;
	}

	switch (type.v) {
	case PW_RESET_TREE:
		ret = pw_handle_reset_tree(merkle_tree,
					   &request->data.reset_tree,
					   request->header.data_length);
		break;
	case PW_INSERT_LEAF:
		ret = pw_handle_insert_leaf(merkle_tree,
					    &request->data.insert_leaf,
					    request->header.data_length,
					    &response->data.insert_leaf,
					    &resp_length);
		break;
	case PW_REMOVE_LEAF:
		ret = pw_handle_remove_leaf(merkle_tree,
					    &request->data.remove_leaf,
					    request->header.data_length);
		break;
	case PW_TRY_AUTH:
		ret = pw_handle_try_auth(merkle_tree, &request->data.try_auth,
					 request->header.data_length,
					 &response->data.try_auth,
					 &resp_length);
		break;
	case PW_RESET_AUTH:
		ret = pw_handle_reset_auth(merkle_tree,
					   &request->data.reset_auth,
					   request->header.data_length,
					   &response->data.reset_auth,
					   &resp_length);
		break;
	default:
		ret = PW_ERR_TYPE_INVALID;
		break;
	}
cleanup:
	response->header.version = PW_PROTOCOL_VERSION;
	response->header.data_length = resp_length;
	response->header.result_code = ret;
	memcpy(&response->header.root, merkle_tree->root,
	       sizeof(merkle_tree->root));
	return ret;
};