summaryrefslogtreecommitdiff
path: root/common/thermal.c
blob: 1bdeaadaecd091aa5ddd7fb168692636ea556a6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Thermal engine module for Chrome EC */

#include "board.h"
#include "chipset.h"
#include "console.h"
#include "gpio.h"
#include "lpc.h"
#include "lpc_commands.h"
#include "pwm.h"
#include "task.h"
#include "temp_sensor.h"
#include "thermal.h"
#include "uart.h"
#include "util.h"
#include "x86_power.h"

/* Defined in board_thermal.c. Must be in the same order
 * as in enum temp_sensor_id. */
extern struct thermal_config_t thermal_config[TEMP_SENSOR_COUNT];

/* Number of consecutive overheated events for each temperature sensor. */
static int8_t ot_count[TEMP_SENSOR_COUNT][THRESHOLD_COUNT];

/* Flag that indicate if each threshold is reached.
 * Note that higher threshold reached does not necessarily mean lower thresholds
 * are reached (since we can disable any threshold.) */
static int8_t overheated[THRESHOLD_COUNT];

static int fan_ctrl_on = 1;


int thermal_set_threshold(int sensor_id, int threshold_id, int value)
{
	if (sensor_id < 0 || sensor_id >= TEMP_SENSOR_COUNT)
		return EC_ERROR_INVAL;
	if (threshold_id < 0 || threshold_id >= THRESHOLD_COUNT)
		return EC_ERROR_INVAL;
	if (value < 0)
		return EC_ERROR_INVAL;

	thermal_config[sensor_id].thresholds[threshold_id] = value;

	return EC_SUCCESS;
}


int thermal_get_threshold(int sensor_id, int threshold_id)
{
	if (sensor_id < 0 || sensor_id >= TEMP_SENSOR_COUNT)
		return EC_ERROR_INVAL;
	if (threshold_id < 0 || threshold_id >= THRESHOLD_COUNT)
		return EC_ERROR_INVAL;

	return thermal_config[sensor_id].thresholds[threshold_id];
}


int thermal_toggle_auto_fan_ctrl(int auto_fan_on)
{
	fan_ctrl_on = auto_fan_on;
	return EC_SUCCESS;
}


static void smi_overheated_warning(void)
{
	lpc_set_host_events(
		EC_LPC_HOST_EVENT_MASK(EC_LPC_HOST_EVENT_THERMAL_OVERLOAD));
}


static void smi_sensor_failure_warning(void)
{
	lpc_set_host_events(
		EC_LPC_HOST_EVENT_MASK(EC_LPC_HOST_EVENT_THERMAL));
}


static void overheated_action(void)
{
	if (overheated[THRESHOLD_POWER_DOWN]) {
		x86_power_force_shutdown();
		return;
	}

	if (overheated[THRESHOLD_CPU_DOWN])
		x86_power_cpu_overheated(1);
	else {
		x86_power_cpu_overheated(0);
		if (overheated[THRESHOLD_WARNING])
			smi_overheated_warning();
	}

	if (fan_ctrl_on) {
		if (overheated[THRESHOLD_FAN_HI])
			pwm_set_fan_target_rpm(-1); /* Max RPM. */
		else if (overheated[THRESHOLD_FAN_LO])
			pwm_set_fan_target_rpm(6000);
		else
			/* TODO: Currently temperature polling task sometimes
			 * hangs. So we should not turn off fan according to
			 * temperature readings. Modify this to turn off fan
			 * when we have reliable temperature readings.
			 * See crosbug.com/p/8479
			 */
			pwm_set_fan_target_rpm(4000);
	}
}


/* Update counter and check if the counter has reached delay limit.
 * Note that we have 10 seconds delay to prevent one error value triggering
 * overheated action. */
static inline void update_and_check_stat(int temp,
					 int sensor_id,
					 int threshold_id)
{
	const struct thermal_config_t *config = thermal_config + sensor_id;
	const int16_t threshold = config->thresholds[threshold_id];

	if (threshold > 0 && temp >= threshold) {
		++ot_count[sensor_id][threshold_id];
		if (ot_count[sensor_id][threshold_id] >= 10) {
			ot_count[sensor_id][threshold_id] = 10;
			overheated[threshold_id] = 1;
		}
	}
	else if (ot_count[sensor_id][threshold_id] >= 10 &&
		 temp >= threshold - 3) {
		/* Once the threshold is reached, only if the temperature
		 * drops to 3 degrees below threshold do we deassert
		 * overheated signal. This is to prevent temperature
		 * oscillating around the threshold causing threshold
		 * keep being triggered. */
		overheated[threshold_id] = 1;
	} else
		ot_count[sensor_id][threshold_id] = 0;
}


static void thermal_process(void)
{
	int i, j;
	int cur_temp;

	for (i = 0; i < THRESHOLD_COUNT; ++i)
		overheated[i] = 0;

	for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
		int flag = thermal_config[i].config_flags;

		if (!temp_sensor_powered(i))
			continue;

		cur_temp = temp_sensor_read(i);

		/* Sensor failure. */
		if (cur_temp == -1) {
			if (flag & THERMAL_CONFIG_WARNING_ON_FAIL)
				smi_sensor_failure_warning();
			continue;
		}
		for (j = 0; j < THRESHOLD_COUNT; ++j)
			update_and_check_stat(cur_temp, i, j);
	}

	overheated_action();
}


void thermal_task(void)
{
	while (1) {
		thermal_process();
		/* Wait 1s */
		task_wait_msg(1000000);
	}
}

/*****************************************************************************/
/* Console commands */

static void print_thermal_config(int sensor_id)
{
	const struct thermal_config_t *config = thermal_config + sensor_id;
	uart_printf("Sensor %d:\n", sensor_id);
	uart_printf("\tFan Low: %d K \n",
			config->thresholds[THRESHOLD_FAN_LO]);
	uart_printf("\tFan High: %d K \n",
			config->thresholds[THRESHOLD_FAN_HI]);
	uart_printf("\tWarning: %d K \n",
			config->thresholds[THRESHOLD_WARNING]);
	uart_printf("\tCPU Down: %d K \n",
			config->thresholds[THRESHOLD_CPU_DOWN]);
	uart_printf("\tPower Down: %d K \n",
			config->thresholds[THRESHOLD_POWER_DOWN]);
}


static int command_thermal_config(int argc, char **argv)
{
	char *e;
	int sensor_id, threshold_id, value;

	if (argc != 2 && argc != 4) {
		uart_puts("Usage: thermal <sensor> [<threshold_id> <value>]\n");
		return EC_ERROR_UNKNOWN;
	}

	sensor_id = strtoi(argv[1], &e, 0);
	if ((e && *e) || sensor_id < 0 || sensor_id >= TEMP_SENSOR_COUNT) {
		uart_puts("Bad sensor ID.\n");
		return EC_ERROR_UNKNOWN;
	}

	if (argc == 2) {
		print_thermal_config(sensor_id);
		return EC_SUCCESS;
	}

	threshold_id = strtoi(argv[2], &e, 0);
	if ((e && *e) || threshold_id < 0 || threshold_id >= THRESHOLD_COUNT) {
		uart_puts("Bad threshold ID.\n");
		return EC_ERROR_UNKNOWN;
	}

	value = strtoi(argv[3], &e, 0);
	if ((e && *e) || value < 0) {
		uart_puts("Bad threshold value.\n");
		return EC_ERROR_UNKNOWN;
	}

	thermal_config[sensor_id].thresholds[threshold_id] = value;
	uart_printf("Setting threshold %d of sensor %d to %d\n",
			threshold_id, sensor_id, value);

	return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermal, command_thermal_config);


static int command_thermal_auto_fan_ctrl(int argc, char **argv)
{
	return thermal_toggle_auto_fan_ctrl(1);
}
DECLARE_CONSOLE_COMMAND(autofan, command_thermal_auto_fan_ctrl);