summaryrefslogtreecommitdiff
path: root/common/uart_buffering.c
blob: 2ccb967e81bc9d6bcf9b26686a1c23a0793282f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Common code to do UART buffering and printing */

#include <stdarg.h>

#include "common.h"
#include "console.h"
#include "host_command.h"
#include "printf.h"
#include "system.h"
#include "task.h"
#include "uart.h"
#include "util.h"

/* Macros to advance in the circular buffers */
#define TX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_RX_BUF_SIZE - 1))
#define RX_BUF_PREV(i) (((i) - 1) & (CONFIG_UART_RX_BUF_SIZE - 1))

/* Macros to calculate difference of pointers in the circular buffers. */
#define TX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_RX_BUF_SIZE - 1))

/* ASCII control character; for example, CTRL('C') = ^C */
#define CTRL(c) ((c) - '@')

/* Transmit and receive buffers */
static volatile char tx_buf[CONFIG_UART_TX_BUF_SIZE];
static volatile int tx_buf_head;
static volatile int tx_buf_tail;
static volatile char rx_buf[CONFIG_UART_RX_BUF_SIZE];
static volatile int rx_buf_head;
static volatile int rx_buf_tail;
static int tx_snapshot_head;
static int tx_snapshot_tail;
static int uart_suspended;

/**
 * Put a single character into the transmit buffer.
 *
 * Does not enable the transmit interrupt; assumes that happens elsewhere.
 *
 * @param context	Context; ignored.
 * @param c		Character to write.
 * @return 0 if the character was transmitted, 1 if it was dropped.
 */
static int __tx_char(void *context, int c)
{
	int tx_buf_next;

	/* Do newline to CRLF translation */
	if (c == '\n' && __tx_char(NULL, '\r'))
		return 1;

	tx_buf_next = TX_BUF_NEXT(tx_buf_head);
	if (tx_buf_next == tx_buf_tail)
		return 1;

	tx_buf[tx_buf_head] = c;
	tx_buf_head = tx_buf_next;
	return 0;
}

/**
 * Copy output from buffer until TX fifo full or output buffer empty.
 *
 * May be called from interrupt context.
 */
static void fill_tx_fifo(void)
{
	while (uart_tx_ready() && (tx_buf_head != tx_buf_tail)) {
		uart_write_char(tx_buf[tx_buf_tail]);
		tx_buf_tail = TX_BUF_NEXT(tx_buf_tail);
	}
}

/**
 * Helper for UART processing.
 */
void uart_process(void)
{
	int got_input = 0;

	/* Copy input from buffer until RX fifo empty */
	while (uart_rx_available()) {
		int c = uart_read_char();
		int rx_buf_next = RX_BUF_NEXT(rx_buf_head);

		if (c == CTRL('Q')) {
			/* Software flow control - XOFF */
			uart_suspended = 1;
			uart_tx_stop();
		} else if (c == CTRL('S')) {
			/* Software flow control - XON */
			uart_suspended = 0;
			if (uart_tx_stopped())
				uart_tx_start();
		} else if (rx_buf_next != rx_buf_tail) {
			/* Buffer all other input */
			rx_buf[rx_buf_head] = c;
			rx_buf_head = rx_buf_next;
		}

		got_input = 1;
	}

	if (got_input)
		console_has_input();

	if (uart_suspended)
		return;

	/* Copy output from buffer until TX fifo full or output buffer empty */
	fill_tx_fifo();

	/* If output buffer is empty, disable transmit interrupt */
	if (tx_buf_tail == tx_buf_head)
		uart_tx_stop();
}

int uart_putc(int c)
{
	int rv = __tx_char(NULL, c);

	if (!uart_suspended && uart_tx_stopped())
		uart_tx_start();

	return rv ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}

int uart_puts(const char *outstr)
{
	/* Put all characters in the output buffer */
	while (*outstr) {
		if (__tx_char(NULL, *outstr++) != 0)
			break;
	}

	if (!uart_suspended && uart_tx_stopped())
		uart_tx_start();

	/* Successful if we consumed all output */
	return *outstr ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}

int uart_vprintf(const char *format, va_list args)
{
	int rv = vfnprintf(__tx_char, NULL, format, args);

	if (!uart_suspended && uart_tx_stopped())
		uart_tx_start();

	return rv;
}

int uart_printf(const char *format, ...)
{
	int rv;
	va_list args;

	va_start(args, format);
	rv = uart_vprintf(format, args);
	va_end(args);
	return rv;
}

void uart_flush_output(void)
{
	/* If UART is suspended, ignore flush request. */
	if (uart_suspended)
		return;

	/*
	 * If we're in interrupt context, copy output explicitly, since the
	 * UART interrupt may not be able to preempt this one.
	 */
	if (in_interrupt_context()) {
		do {
			/* Copy until TX fifo full or output buffer empty */
			fill_tx_fifo();

			/* Wait for transmit FIFO empty */
			uart_tx_flush();
		} while (tx_buf_head != tx_buf_tail);
		return;
	}

	/* Wait for buffer to empty */
	while (tx_buf_head != tx_buf_tail) {
		/*
		 * It's possible we're in some other interrupt, and the
		 * previous context was doing a printf() or puts() but hadn't
		 * enabled the UART interrupt.  Check if the interrupt is
		 * disabled, and if so, re-enable and trigger it.  Note that
		 * this check is inside the while loop, so we'll be safe even
		 * if the context switches away from us to another partial
		 * printf() and back.
		 */
		if (uart_tx_stopped())
			uart_tx_start();
	}

	/* Wait for transmit FIFO empty */
	uart_tx_flush();
}

void uart_flush_input(void)
{
	/* Disable interrupts */
	uart_disable_interrupt();

	/* Empty the hardware FIFO */
	uart_process();

	/* Clear the input buffer */
	rx_buf_tail = rx_buf_head;

	/* Re-enable interrupts */
	uart_enable_interrupt();
}

int uart_getc(void)
{
	int c;

	/* Disable interrupts */
	uart_disable_interrupt();

	/* Call interrupt handler to empty the hardware FIFO */
	uart_process();

	if (rx_buf_tail == rx_buf_head) {
		c = -1;  /* No pending input */
	} else {
		c = rx_buf[rx_buf_tail];
		rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);
	}

	/* Re-enable interrupts */
	uart_enable_interrupt();

	return c;
}

int uart_gets(char *dest, int size)
{
	int got = 0;
	int c;

	/* Read characters */
	while (got < size - 1) {
		c = uart_getc();

		/* Stop on input buffer empty */
		if (c == -1)
			break;

		dest[got++] = c;

		/* Stop after newline */
		if (c == '\n')
			break;
	}

	/* Null-terminate */
	dest[got] = '\0';

	/* Return the length we got */
	return got;
}

/*****************************************************************************/
/* Host commands */

static int host_command_console_snapshot(struct host_cmd_handler_args *args)
{
	/*
	 * Only allowed on unlocked system, since console output contains
	 * keystroke data.
	 */
	if (system_is_locked())
		return EC_ERROR_ACCESS_DENIED;

	/* Assume the whole circular buffer is full */
	tx_snapshot_head = tx_buf_head;
	tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_head);

	/*
	 * Immediately skip any unused bytes.  This doesn't always work,
	 * because a higher-priority task or interrupt handler can write to the
	 * buffer while we're scanning it.  This is acceptable because this
	 * command is only for debugging, and the failure mode is a bit of
	 * garbage at the beginning of the saved output.  The saved buffer
	 * could also be overwritten by the head coming completely back around
	 * before we finish.  The alternative would be to make a full copy of
	 * the transmit buffer, but that requires a lot of RAM.
	 */
	while (tx_snapshot_tail != tx_snapshot_head) {
		if (tx_buf[tx_snapshot_tail])
			break;
		tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_tail);
	}

	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CONSOLE_SNAPSHOT,
		     host_command_console_snapshot,
		     EC_VER_MASK(0));

static int host_command_console_read(struct host_cmd_handler_args *args)
{
	char *dest = (char *)args->response;

	/*
	 * Only allowed on unlocked system, since console output contains
	 * keystroke data.
	 */
	if (system_is_locked())
		return EC_ERROR_ACCESS_DENIED;

	/* If no snapshot data, return empty response */
	if (tx_snapshot_head == tx_snapshot_tail)
		return EC_RES_SUCCESS;

	/* Copy data to response */
	while (tx_snapshot_tail != tx_snapshot_head &&
	       args->response_size < args->response_max - 1) {

		/*
		 * Copy only non-zero bytes, so that we don't copy unused
		 * bytes if the buffer hasn't completely rolled at boot.
		 */
		if (tx_buf[tx_snapshot_tail]) {
			*(dest++) = tx_buf[tx_snapshot_tail];
			args->response_size++;
		}

		tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_tail);
	}

	/* Null-terminate */
	*(dest++) = '\0';
	args->response_size++;

	return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CONSOLE_READ,
		     host_command_console_read,
		     EC_VER_MASK(0));